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Mesoscale Meteorology: Quasi-Geostrophic Theory 

14, 16 February 2017 

Wait…this is a mesoscale class…why do we care about a tenet of synoptic meteorology?? 

On the synoptic-scale, scale analysis of the forcing terms in the equations of motion leads us to 

typically neglect horizontal parcel accelerations in curved flow (the geostrophic approximation) 

and vertical parcel accelerations altogether (hydrostatic balance). Parcel accelerations cannot be 

neglected on the mesoscale, however: they are key aspects of mesoscale dynamics. So, why do 

we spend a week covering principles that are often violated on the mesoscale?  

Mesoscale features form and evolve within the background synoptic-scale environment. Smaller-

scale variations in boundary placement, topography, etc. modulate precisely when and where 

mesoscale phenomena occur, but such variability only matters if the larger scales are supportive 

of a given phenomenon in the first place. Of particular interest are the positions and intensities of 

troughs and ridges (and thus surface boundaries) and the sign and magnitude of vertical motion, 

and quasi-geostrophic theory offers several tools to help us with such assessments. 

Note that these notes are not meant to be comprehensive. They assume background knowledge 

of the scaling assumptions that enter into geostrophic balance, for instance. They do not cover all 

steps within the derivations that result in the equations below. Textbooks in synoptic or dynamic 

meteorology cover these in more detail. Alternatively, you may wish to review primers on these 

topics available at: 

 Geostrophic balance: http://derecho.math.uwm.edu/classes/SynI/GeosApprox.pdf 

 Thermal wind:  http://derecho.math.uwm.edu/classes/SynI/ThermalWind.pdf 

 Intro to Q-G theory:  http://derecho.math.uwm.edu/classes/SynII/QGVorticity.pdf 

 Q-G height tendency:  http://derecho.math.uwm.edu/classes/SynII/QGHgtTend.pdf 

 Q-G omega equation: http://derecho.math.uwm.edu/classes/SynII/QGOmega.pdf 

 Q-vector formulation: http://derecho.math.uwm.edu/classes/SynII/QVectors.pdf 

Thermal Wind 

Formal Definition 

Geostrophic balance allows us to express the horizontal equations of motion as: 
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where Φ = gz is the geopotential and z is height. If we take the partial derivative of ug and vg with 

respect to pressure p, substitute with the hydrostatic relationship and ideal gas law, and integrate 

between two isobaric levels p0 and p1 (where p0 > p1, such that p1 has higher altitude), we obtain: 
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Or, in vector form,  

     v

d

ggT T
p

p

f

R
pp 








 kvvv

1

0

01 ln  

Here, vT = (uT, vT) defines the thermal wind, and vT  is the virtual temperature averaged over the 

layer between p0 and p1. The thermal wind defines the relationship between how the geostrophic 

wind changes with height and the horizontal gradient of layer-mean virtual temperature (which is 

directly proportional to the thickness). It implies a symbiotic relationship between vertical wind 

shear and the horizontal layer-mean virtual temperature gradient. 

From inspection of the equations above, it can be shown that the thermal wind blows parallel to 

the isotherms (of layer-mean virtual temperature) with warm air to the right of the wind. We can 

prove this with a though experiment. Consider only a north-south layer-mean virtual temperature 

gradient, such that vT = 0, with warm air to the south. Layer-mean virtual temperature decreases 

with the north, such that its meridional gradient is negative. Since Rd is positive, f is positive in 

the Northern Hemisphere, and the natural logarithm is always positive, the leading negative on 

uT ensures that uT > 0, defining an eastward-directed wind since vT = 0. 

Application to Temperature Advection and Hodographs 

If we know the geostrophic wind – or, approximately, the full wind – at two pressure levels, we 

can define the thermal wind over that layer using vector subtraction: vT(p1) - vT(p0). Graphically, 

this can be accomplished by placing the origin of both vectors at a common location and drawing 

a vector from the end of vT(p0) to the end of vT(p1), as depicted in Fig. 1 below. Note that this is 

identical to the process used to construct a hodograph. 

   

Figure 1. (left) A thermal wind vT associated with cold air advection. (right) A thermal wind vT 

associated with warm air advection. Isotherms of layer-mean Tv (or, nearly equivalently, T) are 

depicted by the dashed black lines parallel to vT. Despite identical direction and magnitude to the 

thermal wind in each panel, horizontal temperature advection sign differs because of differences 

in how the geostrophic wind varies with height (and is oriented with respect to the isotherms) in 

the layer between p0 and p1. 



3 
 

The left panel of Fig. 1 depicts backing winds, winds that turn counterclockwise with height. The 

right panel of Fig. 1 depicts veering winds, winds that turn clockwise with height. From Fig. 1, 

backing winds and counterclockwise-turning hodographs are associated with layer-mean cold 

virtual temperature advection. Veering winds and clockwise-turning hodographs are associated 

with layer-mean warm virtual temperature advection. We approximately state that veering winds 

are associated with warm air advection and backing winds are associated with cold air advection. 

The importance of temperature advection to synoptic and mesoscale meteorology will be made 

clearer later in this lecture. 

Geostrophic Vorticity and Divergence 

The geostrophic vorticity and divergence have the following definitions: 
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If we substitute in the definitions for ug and vg given earlier and let f = f0 (a constant value of the 

Coriolis parameter), we obtain for ζg: 

















































 2

2

2

0

2

2

000

1111
pg

yfxfyfyxfx
  

The subscript of p on the Laplacian operator indicates that it is evaluated on an isobaric (constant 

pressure) surface. This equation indicates that ζg is related to the Laplacian of the geopotential. 

Where the geopotential is a relative minimum (maximum), ζg is a relative maximum (minimum). 

Thus, cyclonic ζg is maximized in the base of a trough, while anticyclonic ζg is maximized in the 

apex of a ridge. 

Likewise, if we substitute in the definitions for ug and vg given earlier in this lecture and let f = f0, 

we obtain for Dg: 
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In other words, assuming a constant Coriolis parameter, the geostrophic wind is non-divergent! 

A Note on Advection and Partial Derivatives 

Throughout the remainder of this and subsequent lectures, we will encounter terms of the form 

a v , where a is some generic scalar quantity. These represent advection, or the transport of 

some quantity by the wind. Consider a two-dimensional advection term in component form: 
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We can approximate the partial derivatives with centered finite difference approximations, i.e., 



4 
 

x

aa

x

a xx








 

2

11  and 
y

aa

y

a yy








 

2

11
 

where (x, y) denotes the location where the finite difference is evaluated, x+1 is a point along the 

positive x-axis a distance Δx away from x, x-1 is a point along the negative x-axis a distance Δx 

away from x, and y+1 and y-1 are defined similarly except relative to y. Qualitative interpretation 

does not require us to define Δx or Δy, just to define equally-spaced points on each side of (x, y). 

Let us consider the two examples given in Fig. 2 below. 

 

 

Figure 2. (left) An east-west gradient of a, with lower (higher) values to the west (east). (right) 

A local minimum of a. The green and gold vectors denote two wind vectors. Please see the text 

for further details. 

Focus first on the example at left. At the location of the green arrow, v = 0 and u > 0. Let the x+1 

point be located at a+Δa and the x-1 point be located at a-Δa. Thus, 
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Since Δa is positive and Δx is defined as positive, this term is positive. For u positive, the leading 

negative indicates that 0 av , defining negative advection. For negative advection, the 

wind transports – or advects – lower values of a to a given location. Conversely, at the gold 

arrow, v = 0 and u < 0. Setting the x+1 and x-1 points at the same locations as before, we find 

that ∂a/∂x is the same value as in the previous example. But, u is negative, so the leading 

negative indicates that  0 av , defining positive advection. For positive advection, the 

wind transports higher values of a to a given location. 

Let us consider the example at right, with a westerly wind blowing through a local minimum of 

a. At the location of the green arrow, v = 0 and u > 0. If we let the x+1 point be located at a+2Δa 

and the x-1 point be located at a, we obtain: 
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This quantity, as in the other example, is positive. For u > 0, the leading negative again indicates 

that 0 av . At the gold arrow, v = 0 and u > 0. If we let the x+1 point be located at a and 

the x-1 point be located at a+2Δa, we obtain: 
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This quantity is negative. For u > 0, the leading negative indicates that 0 av . The findings 

for this example can be interpreted in light of how the wind transports the local minimum. Areas 

downwind see the local minimum transported toward them, thus decreasing values by advection, 

while areas upwind see the local minimum transported away from them, thus increasing values 

by advection. 

Together, these examples let us state the following guidelines, independent of wind direction: 

 Wind that blows from lower toward higher values defines negative advection. 

 Wind that blows from higher toward lower values defines positive advection. 

 Wind blowing through a local minimum will have negative advection downwind (where 

the wind blows toward) and positive advection upwind (where the wind blows from). 

 Wind blowing through a local maximum will have positive advection downward and 

negative advection upwind. 

As we are often interested in qualitative rather than quantitative guidance, these guidelines help 

us quickly interpret the sign of advection. For temperature-related variables, warm advection is 

analogous to positive advection. For vorticity-related variables, cyclonic advection is analogous 

to positive advection in the Northern Hemisphere. 

In the following, we will also encounter partial derivatives of the sort ∂a/∂p, where pressure p is 

the vertical coordinate. Thus, these terms describe vertical variation in a quantity a. These can be 

approximated using centered finite differences as before, i.e., 
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where the p+1 point is defined above and the p-1 point is defined below the level at which the 

finite difference is evaluated. However, for this definition, note that Δp is negative because p 

decreases with height: p at p+1 is smaller than p at p-1. Thus, if a increases with height, ∂a/∂p is 

negative, while if a decreases with height, ∂a/∂p is positive. 
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Quasi-Geostrophic Height Tendency Equation 

Formal Definition 

It can be shown that the quasi-geostrophic forms of the vorticity and thermodynamic equations 

can be written in terms of two unknowns: vertical motion ω (partial derivative of pressure with 

time, so positive values indicate downward motion) and geopotential Φ. The quasi-geostrophic 

height tendency equation is obtained by manipulating these equations to eliminate ω. Doing so, 

one obtains the following equation: 
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This is a partial differential equation describing the local time-rate of change of the geopotential, 

where χ = ∂Φ/∂t, on an isobaric surface. It is written with pressure p as the vertical coordinate. In 

the above, σ defines static stability and is assumed to be constant in the vertical, ζg + f defines the 

geostrophic absolute vorticity, h is a function of pressure and is positive-definite, K is a frictional 

coefficient and is positive-definite, and dQ/dt is the diabatic heating rate and is positive for 

diabatic warming. All other variables have their standard meteorological meaning. 

It contains four forcing terms on the right-hand side:  

 Geostrophic absolute vorticity advection 

 Differential (in the vertical) potential temperature advection 

 Friction 

 Differential (in the vertical) diabatic heating 

The left-hand side of the equation expresses χ in terms of its second partial derivative in x, y, and 

p. Where a variable is a local min (max), the second partial derivative is a local max (min). As a 

result, we can express the quasi-geostrophic height tendency equation as: 
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A positive (negative) geopotential height tendency χ corresponds to rising (falling) heights. 

Interpretation 

We can interpret the forcing terms to the quasi-geostrophic height tendency equation as follows, 

focusing on falling heights. The opposite holds for rising heights. 

 Cyclonic geostrophic absolute vorticity advection on an isobaric surface results in falling 

geopotential height on that isobaric surface. In general, this term only controls the motion 

of the trough/ridge pattern; it generally does not influence trough/ridge amplitude. 
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 Cold advection decreasing with height, or warm advection increasing with height, over a 

finite pressure layer centered on an isobaric surface results in falling geopotential height 

on that isobaric surface. This term can influence both trough/ridge motion and amplitude. 

 Friction acts to cause heights to fall near the surface for anticyclonic geostrophic absolute 

vorticity. This term acts only near the surface and is of comparatively small magnitude. 

 Diabatic cooling decreasing with height, or diabatic warming increasing with height, over 

a finite pressure layer centered on an isobaric surface results in falling geopotential height 

on that isobaric surface. This term is important when diabatic processes are important but 

is negligible otherwise. 

While the quasi-geostrophic height tendency equation can be used to predict geopotential height, 

it is instead often used as a diagnostic equation. It is typically applied in the middle troposphere. 

The differential potential temperature advection term can be evaluated using thermal wind or by 

evaluating potential temperature advection on isobaric levels above and below the isobaric level 

on which the quasi-geostrophic height tendency equation is evaluated. The ability to use thermal 

wind for this evaluation means that, if you approximate the geostrophic wind with the full wind, 

the local geopotential height tendency can be evaluated from a vertical sounding! 

Direct measurements of diabatic heating rate are typically not available. Instead, we can infer the 

sign and relative magnitude of this term using other data and knowledge of atmospheric physics. 

For instance, the presence of clouds above and a relatively dry layer below a given isobaric level 

infers condensation and latent warming in the cloud and potential evaporation and latent cooling 

in the layer below.  

Quasi-Geostrophic Omega Equation 

Formal Definition 

If one manipulates the quasi-geostrophic vorticity and thermodynamic equations to eliminate Φ 

instead of ω, a diagnostic equation for ω – the quasi-geostrophic omega equation – is obtained: 
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This is a partial differential equation for vertical motion ω on an isobaric surface. It contains four 

forcing terms on the right-hand side: 

 Differential (in the vertical) geostrophic absolute vorticity advection 

 Potential temperature advection 

 Differential (in the vertical) friction 

 Diabatic heating 

The left-hand side of the equation expresses ω in terms of its second partial derivative in x, y, 

and p. Thus, as we did with the quasi-geostrophic height tendency equation, we can express the 

quasi-geostrophic omega equation in terms of a proportionality: 
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Interpretation 

Using the same definitions introduced with the quasi-geostrophic height tendency equation, we 

can interpret the forcing terms to the quasi-geostrophic omega equation as follows, focusing on 

ascent (ω < 0). The opposite holds for descent. 

 Cyclonic geostrophic absolute vorticity advection that increases with height over a finite 

pressure layer centered on an isobaric surface results in ascent across the isobaric surface. 

 Warm advection on an isobaric surface results in ascent across the isobaric surface. 

 Because K ~ 0 above the surface, cyclonic geostrophic absolute vorticity near the surface 

results in lower tropospheric ascent. This is known as Ekman pumping. This occurs only 

in the planetary boundary layer. 

 Diabatic warming on an isobaric surface results in ascent across the isobaric surface. 

Vertical motion is typically maximized in the middle troposphere, and so the quasi-geostrophic 

omega equation is typically applied on middle tropospheric isobaric surfaces (700-300 hPa). It is 

only a diagnostic equation; there are no time derivatives in its formulation. 

Because of the relationship between geostrophic absolute vorticity and geopotential from earlier, 

there is a symbiotic link between the quasi-geostrophic height tendency and omega equations. If 

the geopotential height on an isobaric surface falls, then the geostrophic absolute vorticity on that 

isobaric surface increases. This implies greater cyclonic geostrophic absolute vorticity advection 

on that isobaric surface and, depending on its vertical structure, a potential for greater differential 

cyclonic geostrophic absolute vorticity advection and thus stronger forcing for ascent. 

As with the quasi-geostrophic height tendency equation, potential temperature advection can be 

evaluated using thermal wind or from a spatial analysis on the chosen isobaric level. The ability 

to use thermal wind for this evaluation means that, if you approximate the geostrophic wind with 

the full wind, the sign and relative magnitude of vertical motion can be evaluated from a vertical 

sounding! 

The opposite of Ekman pumping is known as Ekman suction. Inferences of the sign and relative 

magnitude of diabatic heating rate follow from those for the quasi-geostrophic height tendency 

equation; e.g., strong latent warming in thunderstorms provides further forcing for ascent. 

The Q-Vector Form of the Quasi-Geostrophic Omega Equation 

Formal Definition 

The two primary forcing terms of the quasi-geostrophic omega equation, differential geostrophic 

absolute vorticity advection and potential temperature advection, can and often do have opposite 

sign to each other. This is the primary motivation for developing an alternative equation, one that 

does not suffer from this problem: the Q-vector equation. As we will find, it also has properties 

that make it attractive for assessing frontogenesis, a topic which we will discuss next week. 
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To obtain the Q-vector equation, one starts with the quasi-geostrophic horizontal momentum and 

thermodynamic equations. Substitutions from thermal wind and geostrophic divergence, coupled 

with considerable manipulation, are required to obtain the Q-vector equation: 
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Thus, Q-vector convergence 0 Q  is associated with forcing for synoptic-scale ascent, while 

Q-vector divergence 0 Q  is associated with forcing for synoptic-scale descent. 

Interpretation 

Most analyses of the Q-vector equation make use of automated routines to computing Q-vectors 

from gridded analyses of atmospheric data. However, one can estimate Q-vectors as follows. Let 

us perform an axis transformation, defining the x-axis to be parallel to an isotherm (of T, in an 

approximate sense) with warm air to the right. The y-axis is defined perpendicular and to the left 

of the x-axis. An example is provided in Fig. 3 below. 

 

Figure 3. Idealized depiction of the axis transformation described above. North (east) is to the 

top (right) of the figure; however, the new x-axis is defined parallel to the isotherms with warm 

air to the right, with the new y-axis perpendicular to the left of the x-axis. 

In this coordinate system, ∂T/∂x is zero. This allows us to simplify Q1 and Q2. If we do so and 

apply the non-divergence of the geostrophic wind, we obtain: 
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Rd and p are both positive constants on a given isobaric surface. These terms, along with the 

magnitude of the cross-isotherm temperature gradient, control the magnitude but not direction of 

the Q vector. If we are primarily interested in the Q vector’s direction, then we can approximate 

the above with: 
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To evaluate Q, we first find the vector change in vg along the isotherm (the rotated x-axis). Next, 

we apply the -k x operator, which indicates a 90° clockwise rotation (i.e., to the right) of this 

vector. Let us apply this to the idealized trough-ridge pattern given in Fig. 4 below. 

 

Figure 4. Idealized trough-ridge pattern, as defined by the green streamlines, with a ridge (H) to 

the west and a trough (L) to the east. Dashed black lines indicate isotherms, with colder air to the 

north. Solid dark grey arrows indicate Q-vectors at three locations, ridge, trough, ridge from west 

to east. 

Consider the H in Fig. 4. Here, the new x-axis is pointed just slightly south of due east, along the 

isotherm. Let the x+1 point lie at the intersection of isotherm T with the green streamline to the 

east and the x-1 point lie at the intersection of isotherm T with the green streamline to the west. 

In this case, the geostrophic wind at x+1 is out of the north and the geostrophic wind at x-1 is out 

of the south. If we place them at a common origin and draw a vector from the end of that at x-1 

to the end of that at x+1, we obtain a vector pointed from north to south. Application of the -k x 

operator rotates this vector 90° clockwise, such that it points toward the west. 

Consider the L in Fig. 4. Here, the new x-axis is pointed just slightly south of due east, along the 

isotherm. Let the x+1 point lie at the intersection of isotherm T with the green streamline to the 

east and the x-1 point lie at the intersection of isotherm T with the green streamline to the west. 

In this case, the geostrophic wind at x+1 is out of the south and the geostrophic wind at x-1 is out 

of the north. If we place them at a common origin and draw a vector from the end of that at x-1 

to the end of that at x+1, we obtain a vector pointed from south to north. Application of the -k x 

operator rotates this vector 90° clockwise, such that it points toward the east. 
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If we evaluate Q-vector divergence at a point between the H and L, we get positive divergence, 

such that ω > 0, indicating forcing for descent. The opposite is true downstream of the L, ahead 

of the next H: negative divergence (convergence), such that ω < 0, indicating forcing for ascent. 

Connection to Frontogenesis 

A key advantage of the Q-vector formulation versus the quasi-geostrophic omega equation is its 

connection to frontogenesis, indicating how the magnitude of the horizontal temperature gradient 

(a metric of frontal strength) changes with time. The quasi-geostrophic thermodynamic equation 

can be manipulated to show that: 

ji ˆˆ
21 QQT

p

R

dt

d g









  

Here, the total derivative is written with a subscript of g, indicating that the wind that enters into 

its definition is the geostrophic rather than the full wind. This equation indicates that the rate of 

change of the horizontal temperature gradient following the geostrophic wind is a function of the 

Q-vector.  

Perhaps a more useful expression, however, would be one for the magnitude of the horizontal 

temperature gradient, i.e., 

 T
dt

d g
  

This definition can be expanded to show that: 

   Q


 T
R

p

T
T

dt

d g 1
 

This indicates that the rate of change of the magnitude of the horizontal temperature gradient is 

related to the orientation of the temperature gradient (always pointed from cold to warm air) and 

the Q-vector. If these two vectors are perpendicular to each other, their dot product is zero and 

the magnitude of the horizontal temperature gradient does not change following the flow. If these 

two vectors are parallel to and in the same direction as each other, their dot product is positive 

and the magnitude of the horizontal temperature gradient increases following the flow. Finally, if 

these two vectors are parallel to but in opposite directions from each other, their dot product is 

negative and the magnitude of the horizontal temperature gradient decreases following the flow. 

Applying these principles to Fig. 4, we find that the Q-vector is approximately perpendicular to 

the horizontal temperature gradient at each location where the Q-vector was evaluated. Thus, the 

magnitude of the horizontal temperature gradient does not change with time in this example. Let 

us consider a different example from an intense nor’easter that developed in late March 2014, as 

in Fig. 5 below. 
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Figure 5. 700 hPa geopotential height (black lines every 3 dam = 30 m), temperature (green 

dashed lines every 3°C), Q-vectors (black vectors; reference vector at bottom left, units: Pa m-1 s-

1), and Q-vector convergence (shaded with warm colors denoting forcing for ascent; units: 10-12 

Pa m-2 s-1), derived from 1° GFS model analysis data valid at 0000 UTC 26 March 2014. Figure 

obtained from http://www.atmo.arizona.edu/~tgalarneau/realtime/diagnostics.html. 

Focus on the orange-circled area just off of the northeast United States coastline. Here, Q-vectors 

point from cold to warm air – parallel to and in the same direction as the horizontal temperature 

gradient. This depicts a frontogenetical situation. South of the orange-circled area, the opposite is 

indicated: Q-vectors that point from warm to cold air – parallel to and in the opposite direction 

as the horizontal temperature gradient. This depicts frontolysis: weakening of a front with time.  

Fig. 5 illustrates that forcing for both vertical motion and frontal evolution can be identified with 

Q-vectors. Areas of frontogenesis often overlap with regions of ascent. While the release of 

upright (CAPE) or slantwise instability may be important, banded precipitation in the cold sector 

of mid-latitude cyclones often occurs where strong frontogenesis and ascent overlap, particularly 

in the 850-500 hPa layer. In next week’s lecture, we will more formally define frontogenesis and 

revisit some of these concepts. 

http://www.atmo.arizona.edu/~tgalarneau/realtime/diagnostics.html

