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ABSTRACT

Previous studies have suggested that the Advanced Research version of the Weather Research and

Forecasting (WRF-ARW) Model is unable, in its default configuration, to adequately resolve the capping

inversions that are commonly found in the warm-season, thunderstorm-supporting environments of the

central United States. Since capping inversions typically form in environments of synoptic-scale subsidence,

this study tests the hypothesis that this degradation results, in part, from implicit numerical damping of

shorter-wavelength features associated with the model-default third-order-accurate vertical advection finite-

differencing scheme. To aid in testing this hypothesis, two short-range, deterministic, convection-allowing

model forecasts, one using the default third-order-accurate vertical advection finite-differencing scheme and

another using a fourth-order-accurate differencing scheme (which lacks implicit damping but is numerically

dispersive), are conducted for 25 days during the 2017 NOAA Hazardous Weather Testbed Spring Fore-

casting Experiment.Model-derived vertical profiles at lead times of 11 and 23 h are validated against available

rawinsonde observations released in regions located in the Storm Prediction Center’s 0600 UTC day 1 con-

vection outlook’s ‘‘general thunderstorm’’ forecast area. The fourth-order-accurate vertical advection finite-

differencing scheme is shown to not result in statistically significant improvements to model-forecast capping

inversions or, more generally, the vertical thermodynamic profile in the lower troposphere. Instead, the

fourth-order-accurate differencing scheme primarily impacts the representation of longer-wavelength fea-

tures already reasonably well resolved by the model. The analysis does, however, provide quantitative evi-

dence over a large sample that, on average, the WRF-ARWmodel forecasts capping inversions that are too

weak, with negative buoyancy spread out over too deep of a vertical layer, compared to observations.

1. Introduction

Vertical temperature and moisture profiles govern the

buoyancy distribution [e.g., convective available potential

energy (CAPE) and convective inhibition (CIN) as verti-

cally integrated metrics] and are thus important necessary

but insufficient predictors of thunderstorm initiation and

severity. Previous studies have shown that the Advanced

Research version of the Weather Research and Fore-

casting (WRF-ARW; Skamarock et al. 2008; Powers et al.

2017) numerical model is limited in its ability to reliably

predict vertical profile structure in known thunderstorm-

supporting environments (e.g., Burlingame et al. 2017;

Cohen et al. 2015, 2017; Coniglio et al. 2013; Jirak et al.

2015; Kain et al. 2017), particularly those associated with

capping or subsidence inversions (e.g., Farrell and Carlson

1989; Lanicci andWarner 1991). SinceWRF-ARW is used

as the basis of NOAA’s current-generation convection-

allowing modeling system (e.g., Benjamin et al. 2016), this

limitation can impact both deterministic and probabilistic

forecasts of convective events, related phenomena such as

dryline propagation, and even particulate concentrations

and air quality. The governing motivation behind this re-

search is to determine if altering the vertical advection

finite-differencing formulation in WRF-ARW improves

thermodynamic profiles, with a specific focus on capping

and subsidence inversion representation in warm-season,

thunderstorm-supporting environments.

Each spring as part of the HazardousWeather Testbed

(HWT), NOAA conducts the Spring Forecasting Ex-

periment (SFE; e.g., Kain et al. 2003; Clark et al. 2012;

Gallo et al. 2017), working with the National Weather

Service (NWS) and National Severe Storms Laboratory

(NSSL) to promote collaboration between research and
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operations and evaluate new products for operations.

During the 2015 HWT SFE (Gallo et al. 2017), partici-

pants were asked the following question: ‘‘Compare

forecast soundings in regions with elevated mixed layers

(EMLs) from the NSSL-WRF [e.g., Coffer et al. 2013]

and 2.2 km Operational UM (Unified Model [Walters

et al. 2014, Wood et al. 2014]) at sites where observed

raob [rawinsonde observation] data is available. With a

focus on sounding structure in the PBL [planetary

boundary layer] and depiction of any capping inversions,

which model has the best forecast sounding?’’ From the

89 responses, 67% answered theUMwas better than the

NSSL-WRF, 10% answered that the UM was worse

than the NSSL-WRF, and 21% stated they performed

about the same (Jirak et al. 2015). Therefore, one of the

findings from the 2015 SFE is that strong vertical gra-

dients in temperature and moisture associated with

capping inversions are better resolved in the UM com-

pared to the NSSL-WRF (Jirak et al. 2015; Gallo et al.

2017). Qualitatively, similar findings were obtained

from a similar evaluation in the 2014 SFE: the NSSL-

WRF tended to have a smoothed representation of

capping inversions compared to the UM (Kain et al.

2017). This smoothed representation, associated with

inversions that are too weak and negative buoyancy that

is often spread over too deep of a vertical layer (e.g.,

Coniglio et al. 2013), influences the vertical negative

buoyancy distribution for ascending near-surface-based

parcels and thus the vertical displacement required for

these near-surface parcels to ascend to their respective

LFCs. Previous studies have shown, however, that in-

creasing the WRF-ARW’s number of model vertical

levels or varying the PBL parameterization are both

insufficient to resolve this issue (Coniglio et al. 2013;

Kain et al. 2017; Burlingame et al. 2017), with the former

likely resulting in part from the coarse vertical resolu-

tion of the model initial conditions.

Gridpoint-based models such as WRF-ARW use finite-

difference approximations of varying complexity to com-

pute partial derivative terms in the model’s governing

equations. The accuracy of a given finite-difference ap-

proximation depends on the lowest-ordered partial de-

rivative term truncated from the Taylor series expansion

used to obtain the approximation; the higher the or-

der of the lowest-order truncated partial derivative term,

the more accurate the approximation. Further, finite-

difference approximations introduce numerical artifacts

into the model solution that must be mitigated in some

fashion. Among these numerical artifacts, two that are

particularly relevant in this study are implicit damping

and numerical dispersion (e.g., Warner 2011). Implicit

damping represents the scale-selective damping of

modeled features exclusively as a function of the chosen

finite-difference scheme(s), that is, not that associated

with an explicit damping or diffusion term. In general,

odd-order-accurate finite-difference schemes are as-

sociated with implicit damping, with shorter wave-

lengths dampened to greater extent at each model

time step than longer wavelengths. Further, higher-

order-accurate finite-difference schemes are more

scale selective in this damping. By contrast, numerical

dispersion represents the scale-selective departure of a

wave’s phase speed from its true phase speed. As any at-

mospheric variable can be represented by the sum of an

infinite number of waves, each of different wavelength and

amplitude, numerical dispersion can appear to manifest

as a change in amplitude of a given feature such as a cap-

ping inversion, but it does not change the amplitude of the

waves that compose that feature. In general, even-order-

accurate finite-difference schemes are associated with nu-

merical dispersion, the properties of which vary between

the finite-difference schemes used.

The WRF-ARW model-default finite-difference

schemes are odd-order accurate for horizontal (fifth

order) and vertical (third order) advection (Skamarock

et al. 2008), whereas the operational Rapid Refresh

(RAP) and High Resolution Rapid Refresh (HRRR)

models (Benjamin et al. 2016) are fifth-order accu-

rate for both horizontal and vertical advection. These

odd-order formulations include the next-higher even-

ordered scheme plus a residual term that acts as an im-

plicit damping operator of the same order (Skamarock

et al. 2008). Consequently, these finite-difference schemes

implicitly dampen short-wavelength features (e.g., Fig. 1

in Wicker and Skamarock 2002). In contrast, even-

order-accurate formulations do not implicitly dampen

and are slightlymore accurate than the lower odd-order-

accurate formulation in one-dimensional advection ap-

plications (Wicker and Skamarock 2002). However, the

even-order-accurate formulations are numerically dis-

persive and have stricter numerical stability criteria. As

capping inversions typically form in environments of

and are maintained by large-scale subsidence (Carlson

and Ludlam 1968; Lanicci and Warner 1991), it is hy-

pothesized that the implicit damping of short wave-

lengths by the default third-order-accurate vertical

advection finite-difference scheme in WRF-ARW is the

primary contributor to degraded modeled capping in-

version representation. Noting that the UM uses a semi-

Lagrangian formulation, which does not implicitly

dampen for advection, to solve the nonhydrostatic, fully

compressible equations of motion (Walters et al. 2014;

Wood et al. 2014), it is speculated that improved capping

inversion representation in the UM relative to WRF-

ARW is due to the former’s absence of implicit numerical

damping.

1640 WEATHER AND FORECAST ING VOLUME 33

Authenticated evans36@uwm.edu | Downloaded 06/10/21 09:38 PM UTC



In this study, identically configured deterministic

numerical simulations (except for the vertical advec-

tion finite-difference approximation) are conducted

for a representative set of warm-season thunderstorm

events to test the hypothesis that degraded WRF-

ARW-forecast capping inversions are due to implicit

numerical damping associated with the third-order-

accurate vertical advection finite-difference approxi-

mation. In one simulation for each event, the default

third-order-accurate vertical advection formulation is

used; in the other, the next-highest-order-accurate

(fourth order, which does not implicitly dampen but

is numerically dispersive) vertical advection formula-

tion is used. Despite the stricter stability criteria as-

sociated with the fourth-order-accurate formulation,

no change is made to the model time step to maintain

numerical stability. The numerical stability criteria

for one-dimensional linear vertical advection in Car-

tesian, height-based coordinates using the WRF-ARW

model-default third-order Runge–Kutta time-differencing

scheme are

wDt

Dz
# 1:61 and (1a)

wDt

Dz
# 1:26, (1b)

for the third- and fourth-order-accurate finite-differencing

formulations, respectively (Wicker and Skamarock 2002),

where w is the vertical velocity (ms21), Dt is the model

time step (s), and Dz is the vertical grid spacing (m). Using

the WRF-ARW-recommended time step of 6Dx (where

Dx is the horizontal grid spacing in km, such thatDt5 24 s;

Skamarock et al. 2008), the above stability criteria are

satisfied so long as the ratio between thew andDz remains

sufficiently small. For an approximate vertical grid

spacing of 500m, which resembles that of the middle

troposphere in the simulations in this study, the

maximum-allowable magnitudes of w range from

26.25m s21 (fourth order) to 33.54m s21 (third order).

These are sufficiently high to ensure the numerical stability

of the third- and fourth-order-accurate schemes in this

study, and linear instability is not observed in the simula-

tions conducted herein.

The structure of this paper is as follows. Section 2

describes the model configuration, sounding identifica-

tion, and evaluation used in this work. Section 3 dis-

cusses the key results, focusing on vertical temperature

and moisture profiles as well as derived thermodynamic

variables both located and not located where an ob-

served capping inversion is found. A summary and dis-

cussion of the results from and key implications of the

research are provided in section 4.

2. Methods

a. Real-data model simulation description

This study uses WRF-ARW version 3.8.1 to conduct

daily (0000 UTC initialization) model simulations between

3 and 31 May 2017, except 15, 17, 19, and 21 May, due to

hardware limitations, using third- and fourth-order-accurate

finite-difference formulations for vertical advection. The

simulation that uses the default third-order-accurate finite-

difference formulation is termed the control and the simu-

lation using the fourth-order-accurate finite-difference

formulation is termed the fourth-order simulation.

Apart from the vertical advection finite-difference

formulation, the NSSL-WRF configuration (Coffer et al.

2013) of WRF-ARW is used for both simulations as it

provides a benchmark, well-tested configuration (e.g.,

Weiss et al. 2007; Kain et al. 2010; Clark et al. 2012;

Gallo et al. 2017) for convection-allowing model fore-

casts. This configuration uses the Mellor–Yamada–

Janjić (MYJ) PBL (Janjić 1994), WRF single-moment

6-class microphysics (Hong and Lim 2006), Rapid Ra-

diative Transfer Model (RRTM) longwave radiation

(Mlawer et al. 1997), Dudhia shortwave radiation

(Dudhia 1989), and Noah land surface (Chen and

Dudhia 2001; Tewari et al. 2004) parameterizations. In

addition, the model uses positive-definite moisture ad-

vection (Skamarock and Weisman 2009), Dx 5 4 km

over a 1200 3 800 conterminous United States domain

(Fig. 1), 35 vertical levels (with 10 below the s 5 0.8

terrain-following coordinate surface, approximately

corresponding to 800hPa over flat terrain at sea level), a

time step of 24 s, and a forecast length of 36 h. Explicit

diffusion is applied onmodel coordinate surfaces only in

the horizontal; the PBL parameterization handles all ver-

tical diffusion. The WRF-ARW Model also offers an ad-

ditional sixth-order explicit numerical diffusion formulation

FIG. 1. The domain used for all numerical model simulations, en-

compassing the conterminous United States.
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(Knievel et al. 2007), but this is not used in this study. Initial

and lateral boundary conditions for all simulations are ob-

tained from 40-km North American Mesoscale Fore-

cast System (NAM; Janjić and Gall 2012; NCEP 2018)

model data.

b. Vertical profile identification

In verifying model-derived vertical thermodynamic

profiles, routine 0000 and 1200 UTC rawinsonde observa-

tions, which are typically launched approximately 1h be-

fore observation time, are considered as the best-available

‘‘truth.’’ Model forecasts from 11h are verified against

1200 UTC rawinsonde profiles, whereas model forecasts

from 23h are verified against 0000 UTC rawinsonde pro-

files; these represent the forecast hours closest to the times

that the PBL is typically sampled by the rawinsondes.

At 1200 UTC, nocturnal features such as the low-level

jet, a residual layer, and a radiation inversion rooted at

the surface are often present, with vertical wind shear

as the primary driver of turbulent vertical mixing. At

0000 UTC, buoyancy and mechanically driven turbu-

lent vertical mixing and their effects on PBL thermo-

dynamic properties are both present.

All observed and model vertical profiles are linearly

interpolated onto a common grid above ground level

with an interval of 100m. This approximately matches

the model vertical grid spacing near the surface. Given

the demonstrated minimal sensitivity to vertical grid

spacing in previous studies (Kain et al. 2017; Burlingame

et al. 2017), this choice is not expected to significantly

impact the results presented herein. It is possible that an

advanced interpolation technique such as cubic-spline

FIG. 2. SPC day 1 convective outlook issued at 0535UTC 3May 2017 for the period 1200 UTC

3 May–1200 UTC 4 May 2017 (shaded per the legend at bottom right: TSTM, thunderstorm;

MRGL, marginal; SLGT, slight; ENH, enhanced; MDT, moderate; and HIGH, high-risk areas),

and the rawinsonde locations that are verified for the 11- and 23-h lead times for this case.

FIG. 3. Observed (a) KFWD, (b) KLIX, and (c) KDVN skew

T–logp diagrams [red line, temperature (8C); green line, dewpoint

temperature (8C); black line, parcel ascent curve for a surface-based

parcel] valid at the approximate release timeof 1100UTC18May2017.
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interpolation would add detail (realistic or otherwise) to

both the observed and model-derived vertical profiles,

but this has not been tested and is left for future study.

Only rawinsondes released at locations within the

Storm Prediction Center’s 0600 UTC day 1 convective

outlook (valid for the subsequent 1200–1200 UTC pe-

riod) for a given event are considered to isolate those

observations located in thunderstorm-supporting envi-

ronments. For example, verifying 3 May 2017 forecasts

only include radiosonde locations within SPC’s 3 May

2017 day 1 convective outlook at 0600UTC for the period

1200 UTC 3May–1200 UTC 4May 2017 (Fig. 2). A total

of 1665 rawinsonde profiles meet these criteria, of which

72.7% are from locations east of the Rocky Mountains.

Note that most days in May 2017 are associated with

relatively small numbers of tornado, severe wind, and

severe hail local storm reports, such that the sample pri-

marily consists of rawinsonde profiles on days and in re-

gions of primarily nonsevere thunderstorm potential.

Precipitation, whether stratiform or convective in na-

ture, exerts a significant control on vertical thermody-

namic profiles (e.g., PBLmoistening and cooling,middle- to

upper-tropospheric drying and warming). In convection-

allowing model forecasts, these processes invoke the mi-

crophysical parameterization, and the clouds associated

with the precipitation will influence the shortwave and

longwave radiation budgets. To isolate the vertical

profiles (observed and/or modeled) obtained in regions

absent of precipitation and thus to reduce the degrees of

freedom in the analysis, a method similar to that of

Coniglio et al. (2013) is followed. A rawinsonde is not

used in the evaluation if there is observed rainfall or

FIG. 4. (a) The left panel shows bias (solid) and mean absolute error (dashed) between 0 and 4 km AGL for the

control (red) and fourth-order (blue) samples for the 11-h forecast temperature (8C). Shading represents the dis-

tribution between the 25th and 75th percentiles. The right panel is the vertical profile of confidence in the bias

difference being nonzero between the control and fourth-order samples. (b)–(d) As in (a), but for potential tem-

perature (K), dewpoint temperature (8C), and mixing ratio (g kg21), respectively. Note the varying x-axis values

between the leftmost insets in each panel.
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simulated rainfall, fromeither simulation, of$0.5mmh21

at any grid point within 40km in any 1h during the 3h

prior to the rawinsonde release time. For observed rain-

fall, the Stage IV (Lin and Mitchell 2005) hourly multi-

sensor precipitation analysis for the continental United

States is used; simulated rainfall is derived by each model

simulation. Removing soundings in or near regions of

observed and/or modeled precipitation results in a total

of 809 rawinsonde observations remaining for further

evaluation.

c. Capping inversion identification

As an emphasis of this study is on evaluating the sim-

ulated capping inversion representation between the

control and fourth-order simulations, a method for

identifying observed capping inversions is required. To

do so, a subset of the criteria outlined by Farrell and

Carlson (1989) is used. A capping inversion is typically

associated with a substantial increase in temperature

and a decrease in dewpoint temperature through the

inversion layer, with temperature and dewpoint temper-

ature profiles that follow a dry adiabat and mixing ratio

isopleth, respectively, immediately above the inversion

layer. Thus, an observed rawinsonde profile is said to

contain a capping inversion if the temperature increases

by any amount and the dewpoint temperature decreases

by $28C within any contiguous 200-m layer between the

surface and 600hPa. These criteria isolate capping in-

versions from other types of inversions (e.g., tropopause,

frontal, nocturnal/radiation) that might be present. Of the

original 809 rawinsonde observations, 383 are associated

with capping inversions (275 at 1200 UTC and 108 at

0000 UTC). For those soundings that contain a capping

inversion, cap strength is determined by calculating the

parcel buoyancy minimum Bmin, or the minimum value of

the surface-based lifted parcel’s temperature minus the

environment’s temperature (Trier et al. 2014).

To illustrate the effectiveness of the inversion identi-

fication method, observed soundings from 18 May 2017

are depicted in Fig. 3. The sounding from Dallas–Fort

FIG. 5. As in Fig. 4, but for the 23-h forecast.
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Worth, Texas (KFWD), depicts a strong capping in-

version (Bmin 5 268C; Fig. 3a). Temperature rapidly in-

creases with height and dewpoint temperature rapidly

decreases with height over a shallow vertical layer near

850hPa, atop of which substantial negative buoyancy is

present over the layer from ;825hPa to ;690hPa. At

Slidell, Louisiana (KLIX), a weaker capping inversion is

present (Bmin 5 21.58C; Fig. 3b). Although a substantial

decrease in dewpoint temperature is observed at ap-

proximately 750hPa, only a small increase in temperature

is observed at this level.No capping inversion is present at

Davenport, Iowa (KDVN; Fig. 3c). Although tempera-

ture increases with height over a shallow layer centered

near 810hPa, there is an insufficient decrease in dewpoint

temperature with height within this layer to qualify as a

capping inversion using the criteria outlined above.

Because of variability between soundings, it is difficult to

objectively and accurately identify every rawinsonde pro-

filewith (andwithout) a capping inversion using this or any

methodology. However, subjective analysis of inversion

classifications suggest that themethod utilized in this study

effectively and accurately identifies most soundings with a

capping inversion of any strength and nearly all soundings

with well-defined capping inversions (e.g., Fig. 3).

d. Sounding analysis methods

The MetPy (May et al. 2017) package is used to cal-

culate all thermodynamic variables from both the ob-

served and model sounding profiles, including lifted

condensation level (LCL), level of free convection

(LFC), equilibrium level (EL),Bmin, mixed-layer CAPE

and CIN (MLCAPE and MLCIN; here, a 100-hPa-deep

mixed layer is assumed), most-unstable CAPE and

CIN (MUCAPE and MUCIN; here, the most-unstable

parcel is that having the largest equivalent potential

temperature over the lowest 300hPa above the surface),

and surface-basedCAPEandCIN(SBCAPEandSBCIN).

Though MetPy does not use the virtual temperature

correction (Doswell and Rasmussen 1994) for computing

derived thermodynamic parameters, the internally con-

sistentmethod used to compute these parameters for both

modeled and observed soundings suggests that the eval-

uation presented herein is qualitatively robust, although it

is acknowledged that quantitative accuracy is not assured.

In this study, Bmin is computed as the parcel buoyancy

minimum over all negative buoyancy layers that reside

beneath an LFC; in effect, this limitsBmin to the lower- to

middle troposphere, consistent with Trier et al. (2014).

Furthermore, MetPy by default includes negative buoy-

ancy between a parcel’s LCL and first LFC when in-

tegrating CIN for any lifted parcel, though both observed

andmodeled rawinsonde profiles can havemultiple LFCs

and thus multiple ELs, and only returns the first LFC

whenmultiple LFCs exist. Thus, slight codemodifications

are made to integrate CIN over all negative buoyancy

layers and return the LFC that resides above the identi-

fied Bmin (which may, but need not necessarily, be the

LFC closest to the ground).

For vertical profiles of temperature, potential temper-

ature, dewpoint temperature, andmixing ratio, mean bias

and mean absolute error (both defined as modeledminus

observed) are computed over the lowest 4km above

ground level (AGL). Since the bias distributions for each

sample are approximately normally distributed about

their means at all altitudes [not shown; evaluated using

SciPy following D’Agostino (1971) and D’Agostino

and Pearson (1973)], a two-tailed Student’s t test is used

to evaluate the null hypothesis that the difference in the

mean bias between the control and fourth-order sim-

ulations for a given variable and altitude is equal to

zero. A given null hypothesis is rejected, and the dif-

ferences between the means of the control and fourth-

order simulation are said to be statistically significant, if

and only if the confidence [here, 1003(1 2 p), where p is

the two-tailed decimal probability of the null hypothesis

being false] exceeds 95%. Observed vertical profiles are

treated as independent observations despite closely lo-

cated observations at a given observation time likely not

being truly independent of each other. Because of the as-

sumption of independence, the sample size used in com-

puting the Student’s t-test statistic is the full sample size

FIG. 6. Skew T–logp diagram for KFWD valid at 1100 UTC

27 May 2017, showing an example of the control and fourth-order

simulations artificially smoothing a capping inversion. The red line

represents the control simulation sounding, the blue line represents

the fourth-order simulation, and the black line is the observed

sounding. The left and right traces depict dewpoint temperature

and temperature, respectively. See Table 1 for each profile’s de-

rived thermodynamic variables.
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rather than a smaller effective sample size that attempts

to account for nonindependent observations, such as in

Coniglio et al. (2013). As will be seen, most samples are

sufficiently large that this does not meaningfully impact

the results presented herein. Using a smaller sample size

would decrease the likelihood that a given difference is

statistically significant at a specified confidence level.

e. Single-column model experiments

To gain further insight into the relative contributions

of the vertical advection finite-difference formulation

and PBL parameterization to theWRF-ARWmodeled

capping inversion representation, a set of eight simu-

lations for each of 30 strong capping inversion cases is

conducted using the WRF-ARW single-column model

(Hacker et al. 2007; Hacker and Rostkier-Edelstein

2007). The single-column model is configured without

horizontal advection but with vertical advection and

realistic physics (viz., the surface layer, land surface,

radiation, and planetary boundary layer).

Single-column model simulations are run for the 30

strongest observed capping inversions, identified using

Bmin (section 2c), at 0000 UTC that pass the precipitation

filtering criteria (section 2b). Simulations are initialized

FIG. 7. Box-and-whisker diagrams of forecast (a) MLCAPE and (b) MLCIN for the 11-h forecast lead time for

the control (Control) and fourth-order (Fourth) samples. The center orange line represents themean of the sample,

with the box enclosing the distribution between the 25th and 75th percentiles. Thewhiskers represent themaximum

andminimum values, excluding outliers denoted in circles. The cases denoted with ‘‘cap’’ represent the sample that

includes capping inversions, and cases denoted with ‘‘no’’ represent the sample of soundings without a capping

inversion present. At the top P represents the p value for each respective sample, andN represents the sample size.

In this study, CIN is assigned as a positive number. Cases with zero positive buoyancy are removed from all samples.

Note the varying y-axis values between panels.
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using the observed potential temperature, water vapor

mixing ratio, and horizontal wind rawinsonde data. All

land surface parameters (soil temperature andmoisture,

land-use index, soil type, vegetation fraction, canopy

water) and the vertical velocity used to force the model

are obtained from 0-h WRF-ARW model analyses at

the model grid point closest to the observation location.

Simulations are initialized at 0000 UTC and extend

forward 23h; the vertical velocity, soil temperature, and

soil moisture forcing are set to remain constant over

the simulation period. Physical parameterizations are

identical to those used in the full-physics model simu-

lations except for the PBL parameterization, as de-

scribed below. Finally, the single-column model uses 35

vertical levels from the surface and 20km; the number of

vertical levels matches that of the full-physics model

simulations, and the model top of 20km approximates the

50-hPa model top of the full-physics model simulations.

Nine simulations are run for each of the 30 strongest

observed capping inversions. In four, the MYJ PBL

parameterization is used, and the vertical advection

finite-difference formulation is varied among the first-,

third-, fourth-, fifth-, and sixth-order-accurate formula-

tions. Since the single-column model is hard coded to

approximate vertical advection using first-order-accurate

backward finite differences, the single-columnmodel code

is modified to implement the WRF-ARW third- through

sixth-order-accurate vertical advection finite-difference

schemes. In the remaining four simulations, the third-

order-accurate vertical advection finite-difference for-

mulation is used, and the PBL and associated surface

layer parameterizations are varied between the Yonsei

University (YSU; Hong et al. 2006), Asymmetric Con-

vective Model 2 (ACM2; Pleim 2007), Mellor–Yamada–

Nakanishi–Niino level 2.5 closure (MYNN; Nakanishi and

Niino 2009), and quasi-normal scale elimination (QNSE;

FIG. 8. As in Fig. 7, but for the 23-h forecast.
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Sukoriansky et al. 2005) parameterizations. Of these,

the first two represent upward mixing using nonlocal

closures (i.e., turbulent eddies can span the depth

of the boundary layer) and the last two and MYJ

represent upward mixing using local closures (i.e.,

turbulence is limited to adjacent vertical levels).

Only YSU represents downward mixing via nonlocal

closure.

Given this methodology, it is important to empha-

size the purposes of the single-column model experi-

ments. Since the single-column model simulations are

initialized with an observed sounding valid at 0000 UTC

that contains a capping inversion, and in the absence of

spatially or temporally varying forcing during the single-

column model simulations, the single-column model

simulations are unable to faithfully mimic the observed

atmospheric evolution in capping inversion situations.

Rather, the single-columnmodel experiments document

the capping inversion’s evolution in simplified envi-

ronments (viz., weak lower- to middle-tropospheric

synoptic-scale ascent) characteristic of those in which

capping inversions are found over a full diurnal cycle.

The simplified framework enables a more direct

comparison of the effects of parameterized turbulent

vertical mixing and vertical advection finite-difference

formulation on the modeled capping inversion rep-

resentation than in full-physics simulations, while

also being associated with an infinitesimal computa-

tional cost.

3. Results

a. Temperature profiles

For the 11-h (morning) forecast, the mean bias of

temperature in the lowest 4 km AGL is close to

zero for both the control and fourth-order samples

FIG. 9. As in Fig. 7, but for MUCAPE and MUCIN for the 11-h forecast.
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(Fig. 4a), whereas there is a slight positive potential

temperature bias in both samples (Fig. 4b). The ver-

tical bias profiles for both temperature and potential

temperature have nearly identical shape to each

other, with the latter offset by about 10.2K from the

former. WRF-ARW uses a staggered vertical grid,

with the lowest model level on which the mass vari-

ables (including temperature and potential tempera-

ture) offset slightly above the surface, here, from

s 5 1 to s 5 0.9965. As the raw model-level output is

used in the analysis, the surface pressure is slightly

lower in the model forecasts than in the observations,

resulting in the small positive offset in the potential

temperature analysis. A small positive potential temper-

ature bias at 11h is also identified by Coniglio et al.

(2013), which they hypothesize results from a positive

bias in the NAM initial conditions. However, numerous

updatesmade to the NAMmodel between 2011 and 2012

(in Coniglio et al. 2013) and 2017 render it uncertain at

best as to whether the root cause is the same in the

present study.

For the 23-h (late afternoon) forecast, a cold or nega-

tive bias below 0.75km AGL and a warm or positive

bias between 0.75 and 2km AGL are noted for both

temperature and potential temperature in both the con-

trol and fourth-order samples (Figs. 5a,b). These vertical

bias profiles are consistent with the tendency of the MYJ

PBLparameterization to undermix in daytime convective

boundary layers (e.g., Hu et al. 2010; Coniglio et al. 2013;

Clark et al. 2015; Cohen et al. 2015; Burlingame et al.

2017). The mean absolute errors are roughly 18C and 1K

for temperature and potential temperature, respectively,

at all altitudes at both 11 and 23h (Figs. 4 and 5a,b). The

statistical confidence in the differences in bias between

the control and fourth-order samples for both 11- and

23-h temperature and potential temperature forecasts is

FIG. 10. As in Fig. 7, but for MUCAPE and MUCIN for the 23-h forecast.
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too low at all altitudes for the null hypothesis of nonzero

differences to be rejected.

b. Moisture profiles

For the 11-h forecast, the mean dewpoint temperature

bias is slightly positive at nearly all altitudes above the

surface layer, particularly for the control sample (Fig. 4c),

whereas themean water vapormixing ratio bias is slightly

positive between the top of the surface layer and 1km

AGL and slightly negative between 1 and 1.5km AGL

(Fig. 4d). Though the model simulations to this analysis

time encompass the period 0000–1100 UTC, which is

largely during the local nighttime in the United States in

May, the water vapor mixing ratio bias above the surface

layer is consistent with the tendency of the MYJ PBL

parameterization to undermix in daytime convective

boundary layers. It is believed that this bias profile largely

results from a;18C lower-tropospheric moist bias in the

NAM initial conditions (which are generated from a 6-h

NAM forecast using the MYJ PBL parameterization;

Evans et al. 2018) that is maintained in the subsequent

forecast.

The dewpoint temperature mean absolute error in-

creases with height, reaching 58C by 2kmAGL, whereas

themixing ratiomean absolute error is largest between 1

and 2 km AGL, peaking at a magnitude of 1.2 g kg21

(Figs. 4c,d). Large dewpoint temperature mean abso-

lute error results from differences in how shallow dry

layers atop the PBL are represented in each model

simulation and the observations (e.g., Fig. 6); it is not

accompanied by large mixing ratio mean absolute er-

rors since the absolute value of the water vapor mixing

ratio decreases rapidly with increasing height. Similar

results are noted at 23 h (Figs. 5c,d), with the MYJ

parameterization’s characteristic undermixing partic-

ularly evident at this time (during the local daytime

FIG. 11. As in Fig. 7, but for SBCAPE and SBCIN for the 11-h forecast.
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hours) as compared to 11 h. However, the statistical

confidence in the differences in bias between the con-

trol and fourth-order samples for both 11- and 23-h

dewpoint temperature and water vapor mixing ratio

forecasts is too low at all altitudes for the null hy-

pothesis of nonzero differences to be rejected.

c. Derived sounding variables

Mixed-layer parcels (Fig. 7) in the morning tend to be

more stable than observed for both the control and

fourth-order samples, with mean MLCAPE errors of

approximately 2500 J kg21 and mean MLCIN errors of

approximately 80 J kg21. A similar stable bias at 11 h is

noted by Coniglio et al. (2013), a result that is shown in

their study to be insensitive to the PBL parameteriza-

tion. A mixed-layer parcel is defined in this study and in

Coniglio et al. (2013) as one having the mean charac-

teristics of the lowest 100 hPa of the profile, independent

of whether there is a mixed layer. Thus, it is hypothe-

sized that the mixed-layer parcel stable bias results from

errors in the modeled representation of the nocturnal

inversion that influence the mixed-layer parcel stability

calculation. Lending partial credence to this hypothesis,

note that mean MLCAPE and MLCIN errors for both

the control and fourth-order samples are approximately

0 J kg21 in the 23-h forecast (Fig. 8). Both distributions

are similar between the capping inversion and no cap-

ping inversion samples (Figs. 7 and 8). There is no sta-

tistically significant improvement at either 11 or 23 h in

forecast MLCAPE or MLCIN in the fourth-order sim-

ulation relative to the control, whether or not a capping

inversion is present.

Similar evaluations are conducted for other com-

monly considered parcels, namely those that are surface

based or are the most unstable (here defined as the

parcel in the lowest 300 hPa AGL with the maximum

FIG. 12. As in Fig. 7, but for SBCAPE and SBCIN for the 23-h forecast.

DECEMBER 2018 NEV IU S AND EVANS 1651

Authenticated evans36@uwm.edu | Downloaded 06/10/21 09:38 PM UTC



equivalent potential temperature). At 11 and 23h, most-

unstable parcels are, on average, slightly less stable than

the observations for both the control and fourth-order

samples (Figs. 9 and 10). The only meaningful difference

between the capping inversion and no capping inversion

samples is seen at 11 h with MUCIN, at which time the

mean unstable bias is greater in the no capping inversion

sample than in the capping inversion sample (Fig. 9b).

Mean errors in surface-based CAPE and CIN at 11 and

23 h, for both the control and fourth-order samples and

capping inversion and noncapping inversion cases, are

approximately 0 J kg21 (Figs. 11 and 12). An exception

is found for SBCAPE at 11h for capping inversion

cases, where it is slightly unstable biased (Fig. 11a).

As with mixed-layer CAPE and CIN, differences in

most-unstable and surface-based CAPE and CIN be-

tween the control and fourth-order samples are not

statistically significant.

Parcel minimum buoyancyBmin and the pressure level

at which it is found are used to evaluate model forecasts

of capping inversion strength (or, more generally, min-

imum buoyancy) and height. The control and fourth-

order samples each underpredict the minimum negative

buoyancy at 11 h, with mean errors of approximately

0.758–18C for both the capping inversion and no capping

inversion cases (Fig. 13a); however, the mean error in

the level at which Bmin is found is approximately 0hPa

for both samples and all cases (Fig. 13b). At 23h, the

FIG. 13.As in Fig. 7, but forBmin and theBmin height error for the 11-h forecast. Note that it is still possible to have

negative buoyancy but not meet the criteria for a capping inversion. As Bmin is defined as the minimum of the

surface-based parcel temperatureminus the environment temperature,Bmin is a negative value (8C)when SBCIN is

nonzero; thus, positive Bmin errors indicate a given model sample is less stable, and negative Bmin errors indicate

a given model sample is more stable than the observations.
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control and fourth-order samples again underpredict

minimum negative buoyancy for capping inversion cases

(Fig. 14a). Together with the 11-h result, this indicates

that, in the sample mean, the WRF-ARW Model un-

derpredicts the cap strength by approximately 0.58–18C.
The meanBmin error at 23 h for the no capping inversion

cases is approximately 08C, and the mean error in the

level at which Bmin is found is approximately 0hPa

for both the no-capping and capping inversion cases

(Fig. 14). Of all the variables considered in this study,

the confidence in rejecting the null hypothesis of zero

difference between the control and fourth-order sam-

ples is highest forBmin, and generally in the fourth-order

sample’s favor, but remains insignificant at the specified

95% confidence level.

Despite underpredicting the capping inversion or

negative buoyancy strength, on average both the control

and fourth-order samples are generally associated with a

deeper vertical layer over which negative buoyancy is

found. This is particularly evident for the noninversion

cases at 11 h, with near-zero mean surface-based LCL

error (Fig. 15a) and a250-hPa mean surface-based LFC

error (i.e., the surface-based LFC is 50 hPa too high

above the ground; Fig. 16a), and for both inversion and

noninversion cases as 23 h, with positive mean surface-

based LCL errors (i.e., the surface-based LCL is too close

to the ground; Fig. 15b) and near-zero mean surface-

based LFC errors (Fig. 16b). Given that mean SBCIN

errors are near zero (Figs. 11b and 12b), this implies a

deeper negative buoyancy layer in both the control and

fourth-order samples relative to observations that, in

turn, influences the vertical displacement (but not nec-

essarily the vertically integrated forcing) required to lift a

parcel to its LFC. As with all other variables considered,

FIG. 14. As in Fig. 13, but for the 23-h forecast.
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however, the differences in surface-based LCL and LFC

between the control and fourth-order samples are not

statistically significant to at least 95% confidence.

d. Kinetic energy spectrum analysis

Given the results presented to this point, it is natural

to ask why the fourth-order-accurate vertical advec-

tion finite-difference formulation does not improve

the representation of model-derived vertical profiles

and capping inversions, and what impact does the

fourth-order-accurate formulation have on the model

simulations? To attempt to answer these questions, a

kinetic energy (KE) spectrum analysis is conducted for

both sets of simulations following Skamarock (2004)

and Skamarock et al. (2014). KE spectra are com-

puted following Skamarock (2004) and include hourly

forecast data between forecast hours 12 and 36 (after the

model spinup period) at all vertical levels and all grid points

more than 15 points away from the lateral boundaries to

mitigate the influence of the specified lateral boundary

conditions. Spectra are first computed separately for each

simulation between 3 and 31 May, from which the mean

and standard deviation are computed. Note that the KE

spectra are sensitive to implicit numerical damping but not

to numerical dispersion, as numerical dispersion is only

associated with departures of a wave’s phase speed from its

true velocity but not a change in the amplitude of or the

energy carried by a given wave.

At long wavelengths (l $ 1000km), the two spectra

are nearly identical, with each exhibiting the expected

k23 dependence (Fig. 17). As the wavelength becomes

smaller, the two spectra diverge, with higher KE in the

fourth-order simulation set than the control. The fourth-

order simulation KE spectrum exhibits the expected

FIG. 15. As in Fig. 7, but for surface-based LCL (SBLCL) for the (a) 11- and (b) 23-h forecasts. Note that the y axes

vary between panels.
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k25/3 dependence, whereas the control KE spectrum

decays at a slightly faster rate due to the implicit damping

associated with the third-order-accurate vertical advec-

tion finite-difference formulation. The extent to which the

improved spectral match relative to observations con-

tributes to higher forecast skill in the fourth order than the

control simulations is left for future work, however. At

wavelengths smaller than the model’s effective resolu-

tion, or the wavelength at which the model’s KE spec-

trum begins to substantially depart from the observations

(Skamarock 2004; for WRF-ARW, this is ;7Dx, or

;28km in the simulations in this study), KE in the fourth-

order simulations is rapidly diminished such that it

matches that of the control simulations by the shortest-

representable wavelength (2Dx). This is hypothesized
to result from implicit damping associated with the

fifth-order-accurate horizontal advection finite-difference

formulation and the third-order Runge–Kutta temporal

finite-difference formulation, as well as explicit horizontal

damping employed in all model simulations. As a result,

the fourth-order-accurate vertical advection finite-

difference formulation does not improve the repre-

sentation of short-wavelength features such as capping

inversions in the WRF-ARWModel. More generally, it

is concluded from this analysis that the vertical advec-

tion finite-difference approximation is not the primary

contributor to degraded modeled capping inversion rep-

resentation, with other sources of implicit and explicit

damping having a comparatively greater influence.

e. Single-column model simulation results

In the single-columnmodel simulations,model-forecast

capping inversions are almost always found at a higher

altitude after 23 h than in the model initialization (e.g.,

FIG. 16. As in Fig. 7, but for surface-based LFC (SBLFC) for the (a) 11- and (b) 23-h forecasts. Note that the y axes vary

between panels and that the LFC is defined in this study as that occurring above the level at which Bmin is located.
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Fig. 18, which depicts output for four representative

cases simulated with the single-column model). This is

because most of the capping inversions considered

herein are located in environments of weak lower- to

middle-tropospheric synoptic-scale ascent, which acts

over the 23-h simulation duration to lift and weaken the

capping inversion to an extent that depends on the

strength of both the inversion and ascent. In approxi-

mately 50%of cases, the prolonged ascent is sufficient to

result in air parcels being lifted to saturation (e.g.,

Fig. 18d). This is an unrealistically large fraction of cases

and results from the absence of spatially and temporally

varying forcing used within this single-column model

framework.

Model-forecast capping inversions are nearly identi-

cal for the third- through sixth-order-accurate vertical

advection finite-differencing schemes (Fig. 18), with

only small differences noted between the forecasts from

these schemes and those of the first-order-accurate

vertical advection finite-differencing scheme in selected

cases (e.g., Fig. 18a). Larger variation inmodeled capping

inversion structure is noted in the PBL parameterization

sensitivity simulations and is primarily manifest in the

implied vertical extent of parameterized turbulent ver-

tical mixing in the simulations (Fig. 18). This holds even

in the cases where air parcels are lifted to saturation

(e.g., Fig. 18d). Inmany cases, the implied vertical extent

of the parameterized turbulent vertical mixing is con-

sistent with previous studies that used full-physics

models (Coniglio et al. 2013; Burlingame et al. 2017),

with deeper mixing by the nonlocal ACM2 and YSU

parameterizations and shallower mixing by the local

MYJ and MYNN parameterizations (e.g., Figs. 18b,c).

4. Summary and discussion

This study tested the hypothesis that degraded cap-

ping inversion representation in the WRF-ARWModel

largely results from implicit damping associated with the

default third-order-accurate vertical advection finite-

difference formulation. The primary dataset used to

test this hypothesis was output from two parallel de-

terministic, convection-allowing numerical simulations

conducted for a set of 25 days in May 2017: one using a

third-order-accurate vertical advection finite-difference

formulation and one using a fourth-order-accurate ver-

tical advection finite-difference approximation, which is

numerically dispersive but does not implicitly dampen.

Model-derived thermodynamic profiles and stability

parameters were evaluated against 1200 UTC (11 h) and

0000 UTC (23h) routine rawinsonde observations col-

lected in known thunderstorm-supporting environments

unaffected by recent precipitation in observations or

either model forecast. For model-derived thermody-

namic stability parameters, the evaluation was conducted

separately for rawinsonde subsets with and without ob-

served capping inversions. Two-tailed Student’s t tests

were used to test the guiding hypothesis and evaluate

the extent to which differences between the third- and

fourth-order-accurate finite-difference approximations

were statistically significant to $95% confidence.

There was no statistical significance in the differences

in sample-mean bias between the control and fourth-

order simulations for any parameter, variable, or

vertical level considered. As a result, the hypothe-

sis that the fourth-order-accurate vertical advection

finite-difference formulation would result in improved

capping inversion forecasts relative to the default

third-order-accurate vertical advection finite-difference

formulation was rejected. This result was supported by

single-column model simulations that demonstrated

a negligible difference in simulated capping inversion

structure between the higher-order-accurate vertical

advection finite-differencing schemes tested. A greater

control on simulated inversion structure, particularly

inversion height, by PBL parameterization was found in

the single-column model simulations. There are two pos-

sible conclusions that can be drawn from these findings:

that implicit damping (tied to the odd-order-accurate

FIG. 17. The KE spectra for the control (red) and the fourth-

order (blue) simulations. Solid lines represent the mean spectrum

for each set of simulations as a function of wavenumber and

wavelength, whereas shaded areas represent the distributions for

each simulation set between the 0th and 100th percentiles. The

dashed and dotted–dashed lines represent the hypothetical spectra

with slopes of k25/3 and k23, respectively, representing the meso-

and smaller-scale and large-scale dependences, respectively, of the

atmospheric KE spectrum.
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finite-differencing schemes) and numerical dispersion (tied

to the even-order-accurate finite-differencing schemes)

have similar deleterious impacts on simulated capping in-

version representation, or that the vertical advection finite-

difference formulation in theWRF-ARWModel (over the

range of formulations tested) is not the primary cause of

degraded capping inversion representation. The latter

conclusion is supported in part by a KE spectrum analysis,

which implied that other damping mechanisms are more

likely contributors to degraded capping inversion repre-

sentation, although further study is necessary to increase

the confidence in this conclusion.

This study demonstrated that WRF-ARW Model

capping inversions are too weak on average, with neg-

ative buoyancy spread out over too deep of a vertical

layer versus observations for both capping inversion and

noncapping inversion cases, particularly during the local

late afternoon hours. An example is provided in Fig. 6,

FIG. 18. (a) SkewT-logp diagrams, between 1000 and 500 hPa, of temperature (boldface right lines) and dewpoint

temperature (boldface left lines), at 23 h for the single-column model simulations initialized at 0000 UTC 23 May

2017 using the observedMidland, TX (MAF), vertical temperature and dewpoint temperature profiles (gray lines).

Control simulation output is given by the boldface black lines. Output from the first-, fourth-, fifth-, and sixth-order-

accurate vertical advection finite-differencing simulations are depicted by the light purple, peach, pink, and purple

lines, respectively. Output from the YSU, ACM2, MYNN, and QNSE PBL parameterization simulations are

depicted by the long-dashed, short-dashed, dashed–dotted, and solid red lines, respectively. Dashed light orange,

light blue, and light green lines indicate isotherms, dry adiabats, and moist/saturated adiabats, respectively. (b) As

in (a), but for Topeka, KS (TOP), initialized at 0000 UTC 26 May 2017. (c) As in (a), but for Dodge City, KS

(DDC), initialized at 0000UTC 27May 2017. (d) As in (a), but for Brownsville, TX (BRO), initialized at 0000UTC

4 May 2017.
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depicting a case where the cap strength is under-

predicted by approximately 1.58C in both the control

and fourth-order simulations (Table 1) that results

from a modeled capping inversion that is too smooth.

Further, though the ;250-hPa depths of the negative

buoyancy layer are similar between each model simu-

lation and observations, the layer over which the nega-

tive buoyancy is found is;40 hPa closer to the surface in

each model simulation (Table 1). Finally, the tendency

of the MYJ PBL parameterization to undermix in the

daytime convective boundary layer, thus resulting in a

cool, moist bias near the surface and a warm, dry bias

near the top of the PBL, was also corroborated by the

analysis.

It is worthwhile to consider the operational implica-

tions of the results of this study, particularly since the

operational RAP andHRRRmodels also use theWRF-

ARW Model (albeit with a larger number of vertical

levels and a higher-order vertical advection finite-

differencing scheme, among other differences). De-

spite model configuration and initialization differences,

an analysis of 11-h RAP and HRRR model forecasts of

the capping inversions considered in this study suggests

that both operational models struggle to adequately

resolve sharper, stronger capping inversions of the sort

depicted in Fig. 6 (not shown). Although no studies have

yet been conducted to specifically evaluate RAP and

HRRRmodel capping inversion forecasts, this finding is

generally supported by evaluations of HRRR model

forecasts of the sharp vertical temperature gradients

atop shallow cold air masses in the lee of sloped terrain

(James et al. 2018). However, short-rangeHRRRmodel

forecasts of mixed-phase precipitation events are gen-

erally reasonable in their depiction of deeper inversions

in the associated cold-season environments (Ikeda et al.

2017). However, further work is needed to quantify the

extent to which the RAP andHRRRmodels adequately

resolve capping inversions, as well as to understand the

implications for other forecast elements such as con-

vection initiation (e.g., if observed CIN beneath weak

capping inversions is not present in model forecasts

due to an overly smooth simulated inversion), dryline

propagation, and air quality.

This and previous studies documented that model

vertical resolution and PBL parameterization are not

main contributors to degraded WRF-ARW modeled

capping inversions, whereas this study further implies

that the vertical advection formulationmay also not be a

primary contributor to degraded WRF-ARW modeled

capping inversions. Thus, we are left to ask, what are the

main contributors to degraded WRF-ARW modeled

capping inversions? A cursory analysis of NAM, RAP,

and HRRR 0-h analyzed capping inversions suggests

that each model’s analysis is unable to adequately re-

solve observed capping inversions with large vertical

temperature gradients at their base (not shown), sug-

gesting that each model’s cycled initialization (which

updates a short-rangemodel forecast) may contribute to

subsequent forecast capping inversion errors. Addition-

ally, numerical models using semi-Lagrangianmethods to

represent three-dimensional advection do not suffer

from implicit numerical damping associated with finite-

difference formulations for these terms in the equations

of motion. It is likely that this contributes to improved

capping inversion representations in the UM relative to

the WRF-ARW Model. However, the UM uses compar-

atively weaker three-dimensional diffusion than WRF-

ARW (D. Walters 2018, personal communication), which

could also contribute to this finding. Amongmodels that

use finite-difference formulations to solve for vertical

advection, it has been hypothesized that models using

height-based terrain-following coordinates better depict

capping inversions than those using pressure-based

terrain-following coordinates (C. Alexander 2018, per-

sonal communication). Although the reasons why this may

be true are unclear, it has been suggested that the increased

pressure thickness of the warm elevated mixed layer that

typically resides atop a capping inversion may increase the

spacing between adjacent levels across the inversion in

pressure-based relative to height-based terrain-following

coordinate models (M. Coniglio 2018, personal commu-

nication). Further investigation is needed to test these

hypotheses, however, and quantify the respective contri-

butions of all hypothesized contributors to degraded

WRF-ARW Model capping inversions.
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