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ABSTRACT

A statistical–dynamical tropical cyclone (TC) intensity model is developed from a large ensemble of

algorithms through evolutionary programming (EP). EP mimics the evolutionary principles of genetic in-

formation, reproduction, and mutation to develop a population of algorithms with skillful predictor combi-

nations. From this evolutionary process the 100 most skillful algorithms as determined by root-mean square

error on validation data are kept and bias corrected. Bayesian model combination is used to assign weights

to a subset of 10 skillful yet diverse algorithms from this list. The resulting algorithm combination produces a

forecast superior in skill to that from any individual algorithm. Using these methods, two models are de-

veloped to give deterministic and probabilistic forecasts for TC intensity every 12 h out to 120 h: one each for

the North Atlantic and eastern and central North Pacific basins. Deterministic performance, as defined by

MAE, exceeds that of a ‘‘no skill’’ forecast in the North Atlantic to 96 h and is competitive with the opera-

tional Statistical Hurricane Intensity Prediction Scheme and Logistic Growth EquationModel at these times.

In the eastern and central North Pacific, deterministic skill is comparable to the blended 5-day climatology

and persistence (CLP5) track and decay-SHIFOR (DSHF) intensity forecast (OCD5) only to 24 h, after

which time it is generally less skillful than OCD5 and all operational guidance. Probabilistic rapid intensifi-

cation forecasts at the 25–30 kt (24 h)21 thresholds, particularly in the Atlantic, are skillful relative to cli-

matology and competitive with operational guidance when subjectively calibrated; however, probabilistic

rapid weakening forecasts are not skillful relative to climatology at any threshold in either basin. Case studies

are analyzed to give more insight into model behavior and performance.

1. Introduction

Tropical cyclone (TC) intensity forecasting is recog-

nized as being particularly challenging with only slow

improvements over recent years, especially at shorter

lead times (Fig. 1). This lack of improvement is even

more dramatic when the time series is placed alongside

track errors, which are improving at 3 times the rate of

intensity errors over the 24–72h range (DeMaria et al.

2014). At shorter lead times, intensity errors are domi-

nated by the mischaracterization of the TC’s initial in-

tensity, as well as by inner-core and eyewall processes

due to our limited understanding of and ability to re-

solve such processes (Emanuel and Zhang 2016, 2017;

Kieu and Moon 2016). Furthermore, the challenge of

forecasting the magnitude and timing of rapid intensi-

fication (RI) and rapid weakening (RW) significantly

contributes to large absolute forecast errors and overall

forecast difficulty at shorter lead times (Rappaport et al.

2012; Kaplan et al. 2010).

Despite these challenges, some improvement in TC

intensity forecasts have occurred. While improvement

rates of 1%–2% yr21 (as has occurred over the 24–72 h

lead time from 1989 to 2012) may seem negligible, they

are nonetheless statistically significant (DeMaria et al.

2014). Furthermore, at lead times longer than 72h, more

substantial improvements have occurred, with rates av-

eraging 2%–4% yr21 (DeMaria et al. 2014). However,

this 2%–4% increase is largely attributed to better track

forecasts, which have had similar improvement rates

over the same time period, as better track predictions

lead to more accurate forecasts of the environmental

conditions within which a TC is embedded (Emanuel

et al. 2004; DeMaria et al. 2014; Emanuel and Zhang

2016). Yet, the view that TC intensity forecasts have not

improved quickly enough (Gopalakrishnan et al. 2011;

Rappaport et al. 2012; DeMaria et al. 2014; Emanuel

and Zhang 2016) is still indicative that these increasesCorresponding author: Dr. Clark Evans, evans36@uwm.edu.
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may be too small to produce significant practical advan-

tages for emergency management preparation, planning,

and decision-making.

Deterministic TC intensity forecasts are typically di-

vided into three different types of models: dynamical,

statistical–dynamical, and consensus. Whereas dynami-

cal (or numerical weather prediction)models predict TC

intensity by solving the governing equations and ap-

propriately parameterizing other processes (e.g., cloud

microphysics, radiative transfer, turbulence, surface

energy fluxes, etc.), statistical–dynamical models use

statistical methods to assign appropriate weighting to

empirical relationships derived from environmental

and TC structure characteristics obtained from dynam-

ical models and/or observations. Last, consensus models

combine intensity forecasts frommultiplemodels, whether

dynamical and/or statistical–dynamical, and use a variety

of methods to derive the weights (e.g., equal vs variable)

for the selected models. To date, consensus models have

outperformed the other intensity model types in the

Atlantic and eastern and central North Pacific basins, but

they are followed closely by statistical–dynamical models

and recently by the best-performing dynamical models

(Stewart 2014, 2016; Pasch 2015). Probabilistic TC in-

tensity forecasts are almost exclusively derived from

statistical–dynamical models (e.g., Kaplan and DeMaria

2003; Kaplan et al. 2010, 2015; Rozoff and Kossin 2011;

Cloud et al. 2019), although recent attempts to use

dynamical-model ensembles to predictRI shown promise

(e.g., Alessandrini et al. 2018).

Here, we develop two statistical–dynamical TC in-

tensity models, with one forecasting TC intensity, RI,

and RW for the North Atlantic basin and the other

doing so for the eastern and central North Pacific basins.

The process for developing each model is identical with

the only distinction being that the Atlantic model is

FIG. 1. Annual average of official NHC (top left) Atlantic-basin intensity errors, (top right) Atlantic-basin track errors, (bottom left)

easternNorth Pacific-basin intensity errors, and (bottom right) easternNorth Pacific-basin track errors for the period 1990–2017, each as a

function of forecast lead time (colored lines) with least squares lines (dashed) for each lead time superimposed (Cangialosi 2019).
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trained on data from the North Atlantic basin, while the

Pacific model is trained on data from the eastern and

central North Pacific basins.

The models are developed through a statistical–

dynamical approach in which each model is derived

from a large ensemble of algorithms, which are them-

selves generated through the process of evolutionary

programming (EP; Fogel 1999). EP utilizes the evolu-

tionary principles of reproduction and mutation to

develop, through selective pressure, predictor combi-

nations that maximize forecast skill. EP-generated

predictor combinations have shown superior perfor-

mance over dynamical models in 500-hPa height fore-

casts (Roebber 2013) and statistical–dynamical models

like model output statistics in minimum 2-m temperature

forecasts (Roebber 2010, 2015a,b). Furthermore, EP-

generated algorithms provide forecast probability density

functions (PDFs) superior in probabilistic and deter-

ministic skill than many traditional models in 500-hPa

height forecasts, particularly at the tail ends of the

distribution (Roebber 2013). Recently, Roebber and

Crockett (2019) developed a new approach to EP

using a coevolution predator–prey ecosystem and ap-

plied it to both 72-h 2-m temperature forecast as well as

60-min nowcasts of convective occurrence. This new

formulation incorporates competition between algo-

rithms in a simulated ecosystem, wherein algorithms

behave as members of a particular species, and their

ultimate evolutionary success is tied to their ability to

provide skillful forecasts. This new formulation shows

improvements over not only numerical weather pre-

diction forecasts, but also earlier EP approaches ap-

plied to the same data. The performance of the EP

applications described above is due to EP being de-

veloped specifically to produce large-ensemble fore-

casts with a high degree of heterogeneity amongst the

algorithms (Fogel 1999).

What does the EP approach bring to the TC intensity-

change prediction problem relative to existing methods,

particularly deterministic statistical–dynamical models

such as the Statistical Hurricane Intensity Prediction

Scheme (SHIPS; DeMaria and Kaplan 1994, 1999;

DeMaria et al. 2005) and Logistic Growth Equation

Model (LGEM; DeMaria 2009) or probabilistic RI

models such as the SHIPS-Rapid Intensification Index

(SHIPS-RII; Kaplan and DeMaria 2003; Kaplan et al.

2010) and logistic and Bayesian models (Rozoff and

Kossin 2011; Kaplan et al. 2015)? Although the EP

method as formulated here relies on large-scale cy-

clone and environment characteristics as does SHIPS

and LGEM and is composed of primarily linear pre-

dictor combinations as is SHIPS; it has a more flexible

algorithm formulation that allows particular terms to

execute only if a certain criterion is met and thus is

more responsive to specific cyclone and environmental

attributes. Further, it is straightforward to diagnose the

contributions from each predictor to the EP intensity-

change forecast at each lead time, an advantage that it

shares with SHIPS and that is increasingly desirable in

meteorological applications of statistical and machine-

learning approaches (e.g., McGovern et al. 2019).

Unlike existing deterministic and probabilistic models,

which are independent of each other, the approach

used here results in the development of internally

consistent deterministic and probabilistic forecast models,

including the first RW model to our knowledge, although

we note that this is an attribute of the overall methodology

rather than EP itself. Despite not being applied here, the

EP method can continually and independently (i.e., with-

out human intervention) adapt to new and/or improved

information without redeveloping the predictive model

(Roebber 2015a), an attractive attribute for operational

applications. Perhaps most importantly, the EP method

can provide skillful and independent deterministic and

probabilistic forecasts that, in turn, may contribute to im-

proved skill for the consensus methods that are currently

associated with the highest forecast skill.

The rest of this paper is structured as follows.

Section 2 is broken into five parts describing the data

used to train the model, EP and the training process it-

self, the postprocessing techniques used to generate the

models’ final structures, illustrations of the final models’

interpretability, and the operational implementation

and associated model verification methods. The deter-

ministic and probabilistic performance of the model for

each basin along with illustrative case studies are pre-

sented in section 3. The paper closes in section 4 with a

summary and conclusion.

2. Data and methods

a. Data

TC intensity and predictor data for training both

models are sourced from the SHIPS developmental

database, which contains 0-h analysis data in 6-h inter-

vals for all classified TCs (here including both tropical

and subtropical cyclones, the latter of which make

up,5% of the dataset, at all classified intensities). Only

data from TCs for 2000 to 2016 are used, since 2000

coincides with the start of the period when variables

are derived from the Global Forecast System (GFS;

NCEP 2016) rather than the Climate Forecast System

Reanalysis (CFSR; Saha et al. 2010). Forecast predictor

values for TCs from the 2017 and 2018 seasons are used

for independent testing, as described in more detail at

the end of this subsection. Atlantic and eastern and
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central Pacific TCs during the 2017–18 seasons are

representative of a wide range of TC origination loca-

tions, tracks, and intensity evolutions, as objectively

assessed using the performance of no-skill climatology

and persistence-based track and intensity models for

each TC relative to their respective long-term means

(Cangialosi 2018, 2019), such that the EP model per-

formance reported on herein is not believed to be

specific to only the 2017–18 testing data. However,

verifying the model’s performance for a lengthier in-

dependent period for which the data do not yet exist is

needed to evaluate this statement.

The SHIPS dataset contains numerous predictors, but

when more predictors are kept, the solution space that

must be explored grows larger. This potentially com-

promises the skill of the algorithms that result from the

training and validation process, as it may be hard to

search the solution space completely due to a lack of

training information (Bellman 1961). While there is no

preferred method to determine when the solution space

is of optimal size, it is generally desirable to reduce the

number of predictors. Here, this reduction of variables is

done through a combination of linear correlation anal-

ysis, where we require that no two variables be corre-

lated above 0.8, and domain expertise, which we use to

remove variables with a presumed lesser influence on

TC intensity. This process initially results in a selection

of 34 variables (not shown). However, based on initial

performance evaluations of the model, and given that

only ;6000 cases are available for training, we con-

cluded that the dimensionality of the problem was still

too large. Therefore, the 34 predictor variables are

separated into groupings of similar properties (e.g.,

thermodynamics, moisture, shear) and domain expertise

is used to subjectively select a single representative

variable from each group. The resulting selection of

eight variables (Table 1) yields improved performance

over that derived from the larger dataset (not shown).

We note, however, that we did not attempt selecting

different combinations of eight predictors from the

variable groupings [indeed, there are O(106) potential

combinations, such that assuming equal likelihood to

any given combination being the most skillful, it is

simply untenable to search through this entire combi-

nation space], so we cannot assert that this is the most

optimal model obtainable using this approach.

Of the retained variables, all but one are converted

into standardized anomalies (Grumm and Hart 2001;

here computed relative to the predictor value means

over the full 2000–16 dataset) to aid direct comparisons

between variables with dissimilar units. However, one

predictor, the 0–600 km-averaged symmetric tangen-

tial wind at 850hPa from the National Centers for

Environmental Prediction (NCEP) analysis (TWAC) is

notably non-Gaussian (not shown) and is instead con-

verted to a linear scaling from21 to 1, with the extremes

representing the maximum and minimum values of

TWAC in the training dataset (Roebber 2010, 2013,

2015a,b). Last, a constant value of 10 is provided as a

ninth potential predictor, the purpose of which is ex-

plained in section 2b when discussing the algorithm

structure.

Once the desired variables are chosen, the dataset is

processed to remove cases that fall into either of two

categories: the case features missing predictor informa-

tion, or the case initializes or verifies over land. There

are several reasons why it is beneficial to remove the

cases with the missing predictor information. First, cli-

matological values in terms of standard anomalies are

zero, thus using such values to replace missing data may

significantly alter a forecast. Because the algorithms

generally feature nonlinear relationships between vari-

ables, even small changes in inputs can lead to large

changes in the forecast. Last, the model cannot be run

operationally with missing predictor information, and

thus removing these cases ensures consistency with op-

erational practice (and the formal verification described

in section 2e). Meanwhile, cases where the TC forecast

initializes or verifies over land are removed, since an

inland decay model is used in operational practice to

TABLE 1. List of chosen predictor variables used in the EP model.

DELV Change in TC intensity over the prior 12 h

CD26 Climatological depth of 268C isotherm beneath the TC from 2005–10 NCODA analysis

U20C 200 hPa zonal wind (over a 0–500 km radius from the center of the TC)

D200 200 hPa divergence (over a 0–1000 km radius from the center of the TC)

TWAC Azimuthally averaged 850 hPa tangential wind (over a 0–600 km radius from the center of the TC) from the NCEP analysis

SHDC 850–200 hPa shear magnitude, computed with the TC vortex removed and averaged over a 0–500 km radius relative to

850 hPa vortex center

VMPI Maximum potential intensity at the TC location, as determined from Kerry Emanuel’s MPI equation

CFLX Dry-air predictor based on the difference in surface moisture flux between air with the observed (GFS) RH value, and with

RH of air mixed from 500 hPa to the surface, at the TC location

CONS Constant value of 10
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postprocess the intensity forecast over land and account

for inland wind decay (Kaplan and DeMaria 1995, 2001;

DeMaria et al. 2006).

With the culling of problematic cases from the dataset

complete, the remaining TC cases are assigned to one of

three datasets: training (two-thirds of the data), valida-

tion (one-sixth), or independent testing (one-sixth).

However, the dynamical and empirical relationships

between predictors may vary with intensity. Therefore,

if the training dataset is biased toward TCs of a partic-

ular intensity relative to climatology, the potential exists

for the algorithms to be calibrated toward only a subset

of all TC intensities. Consequently, to mitigate against

such an intensity bias, each TC in the dataset is sepa-

rated into three intensity classes based on its lifetime

maximum-achieved intensity: tropical depressions and

tropical storms, weak hurricanes (lifetime maximum-

achieved sustained 10-mwinds of 33–49ms21 or 64–95kt;

1 kt ’ 0.5144m s21), or major hurricanes (lifetime

maximum-achieved sustained 10-m winds of.49m s21

or 95 kt). TCs and all their respective forecasts are then

pulled from each of these three intensity classes to form

the training, validation, and independent testing datasets,

with the relative proportions of cases from each intensity

class being identical between datasets. Lifetime maxi-

mum intensity is used instead of the instantaneous best

track intensity to populate the three intensity classes

primarily for ease, with the result being that all forecasts

for a given TC are contained within a single class.

However, successive forecasts for an individual TC are

serially correlated, thus reducing the effective sample

sizes for each of the training, validation, and testing

datasets through this methodology. Future research is

planned to evaluate the potential benefit from using the

instantaneous best track intensity to populate the three

intensity classes.

Last, while the training dataset contains analysis

values of the predictors at all future lead times, in reality

the future values of these variables are unknown and

must be forecast. This produces uncertainty and inac-

curacy in the real-time input variables as compared to

the analysis variables used in training, and consequently

real-time performance can be expected to be to beworse

than training performance. Therefore, to prevent over-

fitting of the idealized relationships between the analysis

variables and to simulate uncertainty in the forecast

values during the training process, noise is added to the

analysis values. The magnitude of this noise is specified

by comparing the differences between analysis values

and archived real-time 12-h forecast values for homog-

enous training and validation cases across the 2010–16

seasons (based on archived data availability). Since

the 12-h forecast error distributions are approximately

normal about means of zero (not shown), the applied

perturbations are randomly drawn from a Gaussian

distribution centered on zero that has a standard devia-

tion equal to an empirically derived value of one-quarter

of the observed standard deviation in the differences

between the analysis and forecast values across homo-

geneous cases. This noise is dynamic, meaning that each

time the algorithms forecast for a new case during the

training process, the added noise is changed. However,

noise is not added to the validation forecasts to ensure

that the algorithms themselves do not overfit to the noise.

A comparison of model performance across independent

testing cases when utilizing perturbed analysis variables

as model inputs versus real-time, 12-h GFS-predicted

forecast variables showed similar performance between

the two sets of forecasts, suggesting that adding noise is

having the desired effect (not shown).

b. Evolutionary programming

From this curated dataset, a large ensemble of algo-

rithms is generated via a perfect-prognostic approach

using the evolutionary principles of cloning, mutation,

and selective pressure to determine the empirical rela-

tionships between the selected predictor variables and

TC intensity. These algorithms are trained to forecast a

12-h adjustment to a persistence forecast using predictor

values valid at the end of the specified 12-h interval. The

exception to this is the DELV predictor value, which is

specified as the change in intensity over the 12h prior to

the forecast interval.

As in previous studies in which EP is applied to

weather forecasts (e.g., Roebber 2010, 2013, 2015a,b),

the basic genetic architecture of a single algorithm is a

summation of if-then equations, which can be written

most generally in the following form:

F5 «1�
5

i51

IF (V
i1
R

i1
V

i2
) THEN

(C
i1
V

i3
)O

i2
(C

i2
V

i4
)O

i3
(C

i3
V

i5
) , (1)

where Vij is any of the predictor variables in Table 1, Ri1

is a relational operator (# or .), Cij are real-valued

constants ranging from [21, 1], and Oij are either of the

arithmetic operators 1 or 3; « is the bias-correction

factor, which is zero through the training process and set

during postprocessing (section 2c). While conditional

statements and the potential for both linear and non-

linear predictor combinations allow for flexible algo-

rithms, the imposed structure maintains interpretability

since the logic can be connected to dynamical processes

familiar to forecasters (section 2d). While earlier studies

used a summation of 10 if–then statements (Roebber

2010, 2013, 2015a,b), the use of 5 statements here is an
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empirical choice to balance computational expense and

model skill since many algorithms in the previous stud-

ies featured multiple conditional statements that never

executed.

Previously, it was mentioned that one of the input

variables could be a constant value of 10. This value

allows the EP process to generate lines within the al-

gorithm that always or never execute, as is deemed

necessary by the evolutionary process, since no variable

in the training dataset exceeds and no variable in theory

should exceed 610 standard deviations from its clima-

tological mean. Additionally, this value of 10 provides

an additive or multiplicative scaling factor, if deemed

necessary by the training process, to use when calculat-

ing the adjustment based on one or more predictors.

The EP training process for both the North Atlantic

and eastern and central North Pacific basins starts with a

randomly initialized population of 10 000 algorithms

(top left of Fig. 2). While the population size is some-

what arbitrary and could be increased, prior experi-

mentation has shown that the improved skill from larger

populations is minimal and does not compensate ade-

quately for the increase in computational time (Roebber

2016). The algorithms then perform an initial forecast on

the training dataset to determine their fitness/skill (top

middle of Fig. 2), and the worst 2000 performing al-

gorithms [as determined by root-mean-square error

(RMSE), which is chosen as the performance criterion

to better address large-error cases in the initial algo-

rithm development process] are eliminated (top right

of Fig. 2).

The next generation of algorithms is then produced in

what is referred to as the ‘‘evolutionary step’’ (right side

of Fig. 2). The process starts by cloning the 2000 best-

performing algorithms (also determined by RMSE),

which returns the population to its full capacity of 10 000

algorithms. The 2000 clones each then undergo a mu-

tation, wherein one of its five lines is randomly selected,

completely erased, and refilled with randomly selected

coefficient, predictor, arithmetic, and relational opera-

tors (all subject to the rules described above). The

6000 middle-performing algorithms undergo a process

of swapping genetic information in which each algorithm

swaps the entirety of one of its five lines with another

randomly selected algorithm. After swapping genetic in-

formation, these middle-performing algorithms also un-

dergo a mutation in the same manner as the cloned

algorithms. The best 2000 performing algorithms are left

untouched in order to provide a source of good genetic

information for future generations. At this point, the

evolutionary step is complete, and the population of

algorithms is in its second generation (bottom right

of Fig. 2).

This new generation of algorithms then forecasts for

the validation dataset. The 100 best-performing algo-

rithms from this generation are used for the initial listing

of the ‘‘best algorithms list’’ (bottom of Fig. 2). The

process described above then repeats for 300 genera-

tions, after each of which the best algorithm list is up-

dated to include any new algorithms with RMSE below

that of the worst performers on the top-100 list (with

those poorer performers being removed). This method

ensures that the best-performing algorithms are kept, no

matter the generation in which they occur, rather than

simply selecting the best-performing algorithms from

the final generation.

Although the performance of the algorithms improves

rapidly in the first few generations, the rate of improve-

ment eventually plateaus with only small improvements

found in the worst-performing algorithms toward the end

of 300 generations (not shown). Therefore, after 300

generations, an altogether new population of 10000 al-

gorithms is randomly initialized, from which the same

training and validation process described above is fol-

lowed. The algorithms from this second population are

considered for inclusion on the same ‘‘best algorithms list’’

from the previous population. Altogether, five different

FIG. 2. Schematic overview of the EP training process. (top left)

An initial population of 10 000 algorithms is randomly generated,

(top) which then forecast on training data. (top right) Their per-

formance is evaluated, at which time the top 2000 are left un-

changed, the bottom 2000 are replaced by cloned and mutated

versions of the top 2000, and (right) the middle 6000 undergo an

information exchange and mutation. (bottom right) The resulting

population of 10 000 algorithms then forecasts on the validation

dataset, and (bottom) the 100 best-performing algorithms are re-

tained to generate the initial best-performing algorithms list. The

process then repeats for 300 iterations and five randomly initialized

populations, with the best-performing algorithms list updated

rather than entirely replaced at subsequent stages. Please refer to

section 2b for more details.
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populations of 10 000 algorithms are run for 300 itera-

tions each to produce a final set of 100 algorithms on the

‘‘best algorithms list.’’ Note that it is theoretically pos-

sible for two or more identical algorithms to appear on

the best algorithms list; however, in practice, this is ex-

tremely unlikely (and did not occur in this study) given

the randomness inherent to the initialization and mu-

tation evolutionary stages and the size of the parameter

space considered.

c. Bayesian model combination

While each individual algorithm on the final 100 best-

algorithms list constitutes a TC intensity model, statis-

tical postprocessing techniques can be used to achieve

improved performance and reliability relative to any

individual algorithm. Here, performance on the training

and validation cases is first used to bias correct the 100

best-performing algorithms, which enables setting of the

value of « in (1) for each algorithm. Since the training

and validation cases are not ordered chronologically

(recall that cases were sorted based on maximum TC

intensity), we use a simple bias correction (average error

of the training and validation cases) rather than weight

decay, as used in other EP studies (e.g., Roebber 2018).

The correction calculated for those cases is then applied

uniformly to all test cases.

Next, Bayesian model combination (BMC) is used to

assign weights to an ensemble of multiple algorithms,

such that their weighted combination results in a fore-

cast that is superior in skill to that from any individual

algorithm (Monteith et al. 2011; Roebber 2018 and ref-

erences therein). However, a limitation of BMC is that

it is computationally expensive (which scales with nx,

where n is the number of possible weights and x is

the number of algorithms considered), and therefore

members must be subselected from the overall pop-

ulation (e.g., Hoeting et al. 1999), even as the ‘‘best al-

gorithms list’’ is already a subset of the wider population

of all algorithms. In this study, 10 algorithms from the

bias-corrected 100-best-performing algorithm list, as

chosen to minimize mean absolute error (MAE) and

maximize mean absolute difference (MAD) across

the set of bias-corrected forecasts for training and

validation cases, are selected for processing by BMC.

This gives a subset of algorithms that are both skillful

and diverse.

This subselection is performed as follows. First, the

100 best algorithms are ranked according to MAE.

Then, starting from the best performer by MAE and

moving down the 100-best-performing-algorithm list

toward the worst performer in sequential order, the

MAD of the algorithm under consideration is compared

against that of all other algorithms that have been added

to what will be the final list of 10 algorithms. If that

algorithm has a MAD with any other algorithm on

that list that is below a certain specified threshold (i.e.,

it is in some sense too similar to another algorithm;

here, this difference is arbitrarily set to 0.9 kt), it is

rejected. This process is followed until 10 algorithms

are obtained.

After the 10 algorithms have been identified, the

BMC process loops through all possible combinations of

the 10 members using four raw weights (0, 1, 2, 3), with

the sum of the weights normalized to equal one, un-

der the requirement that at least one algorithm receives

a nonzero raw weight. Thus, the minimum nonzero

normalized weight that can be obtained is 1/(11 31 31
31 31 31 31 31 31 3) or 1/28. In that instance, the

other nine algorithms would have normalized weights of

3/28. Similarly, the maximum weight that is not unity

(which occurs when nine algorithms have raw weights of

0 and the tenth is given any nonzero weight) is 3/4. A

wide range of algorithm weights are thus obtainable

through this procedure. A discussion of the Bayesian

attributes of the weight-determination process is

given by Monteith et al. (2011). Their procedure is

followed in this study, but under the condition that a

model combination is estimated to be correct provided

the forecast provided is better than or equal to a per-

sistence forecast.

The final weighting used for the model is the one that

minimizes MAE across the validation dataset, with

MAE chosen over RMSE to mirror National Hurricane

Center (NHC) operational performance evaluation

metrics for TC intensity forecasts (Cangialosi 2019).

Although we acknowledge the discrepancy that this

causes with respect to the deterministic EP model

training and validation process, wherein RMSE is

used as the performance criterion, the deterministic

forecast skill of a version of the EP model in which

RMSE is used as the BMC performance criterion is

less than that of the MAE-based version (not shown).

As the goal at this stage is to produce a deterministic

model that minimizes the operational forecast skill

metric of MAE over large forecast samples, many of

which are dominated by small-error cases (especially

at short lead times), we believe that using MAE as the

performance criterion is warranted. The selection of

only 10 algorithms is deemed sufficient as, in practice,

multiple algorithms typically receive a weighting of

zero, indicating that the BMC process identifies that

more algorithms are present than are necessary. In

fact, this is the case for both the North Atlantic and

eastern and central North Pacific models herein: only

seven algorithms are retained with nonzero weights

for the Atlantic, whereas only two algorithms are
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retained with nonzero weights for the eastern and

central North Pacific basins (see the appendix).

With the weightings of each algorithm obtained, the

final deterministic forecast is comprised of a simple

weighted sum of the retained bias-corrected algo-

rithms’ individual forecasts. A discussion of the

Bayesian attributes of the BMC process is given by

Monteith et al. (2011).

BMC can also be used to generate a PDF from which

probabilistic forecasts of RI and RW can be obtained.

To do so, Gaussian distributions with mean equal to the

forecast intensity change from each unweighted algo-

rithm and standard deviations determined from the PDF

of observed 0–12h intensity change across the training

and validation cases are generated and normalized to

obtain PDFs for each algorithm’s forecast. These indi-

vidual PDFs are then weighted by the BMC-derived

weightings and summed to give the total normalized

forecast intensity-change PDF. The fraction of the PDF

that exceeds any of the standard RI/RW intensity-

change thresholds provides the uncalibrated forecast

RI/RW probability (section 2e). This formulation leads

to the probabilistic model’s performance characteristics

being directly reliant on those of the deterministic

model, which is likely a useful yet suboptimal approach

for predicting intensity changes on the tails (RI and

RW) of the intensity-change distribution depicted in

Fig. 3. Alternative approaches that use a probabi-

listic performance criterion such as Brier skill score

(BSS; Brier 1950; Murphy 1973) or the continuous

ranked probability score (an extension of the Brier

score to multiple thresholds of a continuous predictand;

Hersbach 2000) are likely to produce superior proba-

bilistic skill (e.g., Raftery et al. 2005), and future re-

search is planned to explore their viability for RI/RW

forecasts.

d. Algorithm interpretability

Predictive models generated using evolutionary

programming have the desirable characteristic of

interpretability: unlike other machine-learning tech-

niques such as neural networks, it is straightforward to

diagnose what predictors form the model and what

weights are given to each and thus to quantify the rela-

tive contributions of each predictor and algorithm. This

subsection demonstrates these attributes, first through

FIG. 3. Histogram of observed (orange) and forecast (blue) 12-h intensity changes

(rounded to the nearest 5 kt, consistent with operational classification practices) across

the 2000–16 training data for the (top) North Atlantic and (bottom) eastern and central

North Pacific basins.
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an analysis of the final model for each basin followed by

how the relative contributions from each predictor are

diagnosed.

In the Atlantic basin, seven algorithms received a

nonzero weighting from the BMC process (see the

appendix). Of the seven algorithms, six of them include

two if-then statements that are always true, such that the

equation that follows will always be calculated.

Meanwhile, algorithm 53, which has the largest weight-

ing of any of the algorithms, has three if-then statements

(algorithm lines 1, 4, and 5) that are always true and a

fourth (algorithm line 2) that, so long as D200 is not

more than 10 standard deviations above climatology, is

also always true. Otherwise, the outcomes of the re-

maining if-then statements in the Atlantic model are

conditioned on the values of the respective predictors.

No if-then statements in this model are always false. In

the Pacific basin, only two algorithms received a nonzero

weighting from the BMC process (see the appendix). As

for the Atlantic basin, two if-then statements in both

algorithms are always true, and there are no if-then

statements that are always false.

The physical interpretability of each algorithm is best

illustrated through an example. Consider the scenario of

an intensifying east Pacific TC and focus on the first line

in algorithm 69 of the Pacific model (see the appendix).

The if-then statement contains DELV andU20C. For an

intensifying TC, DELV is large and positive, whereas

U20C is likely slightly negative (e.g., easterly shear) to

near zero. Thus, this line is likely to execute. The intensity

adjustment itself depends on the product of maximum po-

tential intensity (VMPI, which is typically positive, or above

the basinwide climatology, for intensifying TCs) and the

negative of U20C, which is positive. This positive value

is then added to the product of a negative coefficient

with the 850–200-hPa vertical wind shear magnitude

(SHDC), which is typically negative (i.e., below the ba-

sinwide climatology) for an intensifyingTC.Consequently,

the net contribution from this line to the intensity forecast

from this algorithm is positive, indicating a forecast of

continued intensification (albeit potentially offset by the

remaining lines of this algorithm and contributions from

the other algorithm). The magnitude of this positive fore-

cast intensity increment depends on the extent to which

DELV and VMPI are above climatology and U20C and

SHDC are below climatology. This increment is subse-

quently added to those from the other lines within this

algorithm, the result of which is then bias corrected and

weighted using the BMC-determined weight applicable to

that algorithm.

When considering individual forecasts from the

complete model, and not just a single line within a single

algorithm as described above, it is useful to know the

extent to which certain predictors contributed to the

overall intensity-change forecast. Here, the relative

contribution from each predictor to the overall forecast

is obtained by rerunning the forecast with the variable

of interest set to an input value of zero (i.e., a climato-

logical value). The direction and magnitude of the

change in the intensity forecast as compared to the

original forecast, each as bias-corrected and BMC-

weighted as described above, provides a measure of

the impact that predictor has on the forecast. For ex-

ample, if a predictor is set to zero and the resulting

intensity forecast decreases by 5 kt, that predictor is

said to have had a 15 kt contribution to the original

forecast. Conversely, if zeroing out a predictor results

in an increased intensity forecast, that predictor is said

to have a negative contribution to the original fore-

cast. Since the algorithms forecast for a 12-h intensity

change, these relative contributions are calculated

only over a 12-h interval. An estimation of the relative

contribution at for example, 36 h (as in the operational

model application; section 2e), still presumes an ac-

curate 24-h forecast with no zeroing of the variable at

the earlier lead times. Thus, the relative contribution

of that variable at later lead times is estimated by

summing up its individual relative contributions over

each 12-h interval.

e. Operational implementation and verification

While the training process produces algorithms that

forecast a 12-h intensity change, multiple successive

forecasts are required to obtain intensity forecasts beyond

12h in duration (e.g., every 12h out to 120h, currently the

longest lead time inNHCoperational forecasts). Although

the same model is used in each successive 12-h intensity-

change forecast, the input values change. Each 12-h ad-

justment is calculated using predictor values derived from

the most-recent GFS forecast fields at the end of each

specified 12-h interval, when the intensity forecast verifies.

The exception to this again is the DELV predictor; the

DELV predictor is an observed value from the NHC

working best track analysis for the first 0–12h intensity-

change forecast, whereas theDELVpredictor is calculated

from EP model outputs at subsequent lead times (e.g., for

12–24h, DELV is defined as the EP model’s predicted

intensity change from 0 to 12h).

To obtain the probabilistic forecasts at each lead time,

a new PDF is generated around each of the successive

intensity-change forecasts and the probability ofRI/RWas

compared to the 0-h intensity is calculated at the standard

thresholds of 620 kt (12 h)21, 625 kt (24h)21, 630kt

(24h)21,635kt (24h)21,640kt (24h)21,645kt (36h)21,

655kt (48h)21, and665kt (72h)21 (Kaplan andDeMaria

2003; Kaplan et al. 2015; Wood and Ritchie 2015).
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The probabilities obtained this way form the uncali-

bratedmodel; however, the EPmodels’ intensity-change

PDFs are insufficiently wide (i.e., underdispersive;

Fig. 3), with aggregate forecast RI probabilities that

are lower than the verifying observations. Therefore,

RI probabilities are subjectively calibrated using

probability matching, which is akin to the quantile

mapping approach described by Alessandrini et al.

(2018). This is best illustrated by an example. Consider

the 30 kt (24 h)21 RI threshold for which the EP model

underpredicts RI probabilities in both basins (Fig. 4a).

Probability matching involves subjectively determining

what model-predicted 24-h intensity-change threshold

results in a perfectly reliable (i.e., identical forecast and

observed probabilities) forecast at the 30 kt (24 h)21 RI

threshold. In this instance, a model-predicted 24-h in-

tensity change of 25 kt results in much improved forecast

reliability relative to the 30kt (24 h)21 observed RI

threshold (Fig. 4c). This process is then repeated for all

RI thresholds. For the RI models in both basins, reli-

ability at each threshold improves when the EP model

probabilities are calibrated using a model threshold 5 kt

lower than the observed threshold (as in the example

described above). The same calibration, however, was

not applied to the RW model as the model is generally

reliable when uncalibrated (Fig. 4b) and the same25 kt

calibration causes forecast probabilities to be higher

than observed (Fig. 4d).

Performance of the deterministic EP models for the

Atlantic and eastern and central North Pacific basins is

evaluated across forecast fields from the independent

2017–18 seasons. Following standard NHC practice

(e.g., Cangialosi 2019), performance is evaluated in

terms of MAE and skill normalized relative to that of

the no-skill Statistical Hurricane Intensity Forecast

model accounting for overland decay [Decay SHIFOR

Model Intensity Forecast (DSHF); here referred to as

blended-intensity Operational CLIPER 5 (CLP5) and

120-h DSHF (OCD5) since DSHF forms the intensity

component of the combined-track-intensity OCD5 fore-

cast, which is based on TC time, position, movement, and

intensity and its 12-h change; Knaff et al. 2003]. To place

the results into an appropriate context, model perfor-

mance is compared to that of several of the most-skillful

operational intensitymodels: the 6-h interpolated version

of the Hurricane Weather Research and Forecasting

FIG. 4. Reliability of the EPmodel for the NorthAtlantic (blue) and east and central North Pacific basins (red) at

the 30 kt (24 h)21 threshold for the (a) uncalibrated RI model, (b) uncalibrated RW model, (c) RI model with a

25 kt calibration applied, and (d) RW model with a 25 kt calibration applied.
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Model (HWFI; Tallapragada et al. 2014), LGEM, SHIPS,

and official (OFCL) and 6-h interpolated (OFCI) NHC

official forecasts. Note that the samples for all models

are homogenized (i.e., only synoptic times at which all

models provided a forecast are retained) and the evalu-

ation considers only overwater cases.

The performance of the probabilistic EP RI and

RW models is determined using BSS, which is cal-

culated as a percent improvement over a climato-

logical forecast, defined here as the climatological

probabilities of RI and RW at each threshold over the

training dataset. These climatological probabilities

are given in Table 2. Likewise, performance of the

probabilistic models is compared to the SHIPS-RII,

logistic model, Bayesian model, and a consensus of

the three models’ forecasts using a homogeneous

forecast set featuring only overwater forecasts across

the 2017–18 season.

3. Results

a. Deterministic model performance

Across the 2017–18 seasons, the EP model skill is

5%–19% higher than that of OCD5 through 96h in the

Atlantic basin (Fig. 5a). However, the model fails to

exhibit the characteristic plateau in intensity errors be-

yond 96h (Fig. 5c), and consequently, EP model skill

becomes 11% worse than OCD5 at 120h. Although

model performance lags the best-performing HWFI

model and the NHC official forecast, performance

through 96 h is statistically indistinguishable from that

of both SHIPS and LGEM (Fig. 5c). Although EP

model skill closely mirrors that of SHIPS, with which it

shares some predictors and conceptual underpinnings,

only 25%–50% of the variance (most at shorter lead

times, least at longer lead times) in the EP model

forecasts can be explained by the corresponding SHIPS

model forecasts (not shown), suggesting that the EP

model provides independent predictions to those from

SHIPS.Meanwhile, the EPmodel’s bias over the 2017–18

Atlantic seasons is comparable to that of the othermodels

considered, with a small negative bias at all forecast lead

times (not shown).

In the eastern and central North Pacific basin, the

EP model is less skillful than the no-skill OCD5

model prior to 72 h (Figs. 5b,d). At later forecast

times, the EP model’s MAE is statistically indistin-

guishable from those of OCD5 and LGEM, albeit

over small forecast samples (Fig. 5d). Further, al-

though all models considered are negatively biased at

all forecast lead times, the EP model is slightly more

negatively biased than other models (not shown). The

largest negative bias of 210 kt at the 48-h lead time

coincides with the largest MAE and, in general, the

bias and MAE of the model mirror each other at all

lead times. Insight into model performance for fore-

casts with particularly large MAE is provided in

section 3c.

b. Probabilistic model performance

For RI, the skill (as measured by BSS) of the uncali-

brated EP model in the Atlantic is approximately equal

to that of a climatological forecast at all except the

25–30 kt (24 h)21 thresholds, at which it is marginally

more skillful than climatology (Fig. 6, top). Calibration

adds 10%–50% skill to the uncalibrated model skill

at all thresholds except the 20 kt (12 h)21 threshold,

at which a significant skill reduction (for unknown

reasons) is noted. Atlantic calibrated RI model skill

is competitive (here characterized by overlapping

5th–95th percentile forecast ranges determined us-

ing bootstrapping) with that of most operational RI

models at the 25–40 kt (24 h)21 thresholds. In the

eastern and central North Pacific, uncalibrated EP

model skill is approximately equal to that of a cli-

matological forecast at all thresholds (Fig. 6, bot-

tom). Calibration again adds 10%–50% skill to the

uncalibrated model at all thresholds except the 20 kt

TABLE 2. Climatologies of RI and RW occurrences, and their rates relative to their respective samples of all TCs, across the 2000–16

training cases used to calculate the BSS.

ATL PAC

RI/RW threshold (kt h21)

No. of RI/RW

cases

Total No. of

cases

Climatological RI/RW

rates

No. of RI/RW

cases

Total No. of

cases

Climatological RI/RW

rates

20/12 70/25 3029 2.31%/0.83% 105/74 3318 3.16%/2.23%

25/24 177/57 2624 6.74%/2.17% 291/240 2928 9.93%/8.20%

30/24 100/31 2624 3.81%/1.18% 187/146 2928 6.38%/4.99%

35/24 66/16 2624 2.51%/0.61% 128/84 2928 4.37%/2.87%

40/24 44/7 2624 1.67%/0.27% 94/52 2928 3.21%/1.78%

45/36 78/14 2305 3.38%/0.61% 146/91 2565 5.69%/3.60%

55/48 73/9 2028 3.59%/0.44% 134/74 2241 5.97%/3.30%

65/72 86/3 1583 5.43%/0.19% 98/68 1624 6.03%/4.19%
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(12 h)21 threshold, at which a significant skill reduc-

tion is again noted. Pacific calibrated RI model skill

is competitive (characterized in the same fashion as

for the Atlantic model) only with the operational

Bayesian RI model at all thresholds.

While the calibrated EP RI model is generally more

skillful than a climatological forecast, the same is not

true for the RW model. In the North Atlantic basin,

model performance is slightly worse than that of a cli-

matological forecast at all thresholds (Fig. 7, top). In the

eastern and central North Pacific basins, the EP RW

model’s skill is worse than that of a climatological

forecast at all thresholds (Fig. 7, bottom).

While most RI/RWmodels are specifically developed

to forecast a percent chance of RI/RW, the EP RI/RW

models are developed from the deterministic model and

seek to transform the forecast intensity change into

a percent chance for RI/RW. Although forming an

RI/RWmodel around this transformation from intensity

change to probability of RI/RW is logical, it may not be

the best way to form a probabilistic model. With many

more non-RI/RW cases than RI/RW cases, we speculate

the relationship between forecast intensity change and

the probability of RI/RW is nonlinear and thus cannot

be accounted for in the current model formulation.

Consequently, independent RI/RW probabilistic models,

FIG. 5. (a),(b) Percentage improvement relative to the OCD5model and (c),(d) MAE for the deterministic

EP model (blue), HWFI (yellow), LGEM (magenta), official NHC forecast (OFCL, black), SHIP (brown),

6-h interpolated NHC forecast (OFCI, gray), and persistence (Per, red) forecasts across the 2017–18 seasons

for the (a),(c) North Atlantic and (b),(d) eastern and central North Pacific basins. The number of forecast

cases in each homogeneous forecast set is given at the bottom of the each panel. The blue-shaded region in

(c),(d) represents the 5th–95th percentile range of the EP model forecasts, as determined via Monte Carlo

bootstrapping using 1000 samples (with sample sizes equivalent to the number of forecasts at each lead

time) with replacement. Filled circles denote that the given model’s MAE at that lead time is significantly

different from that of the EP model to at least 95% confidence, whereas open circles denote that the given

model’s MAE at that lead time is not significantly different from that of the EP model to at least 95%

confidence.
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such as the SHIPS-RII, logistic, and Bayesian models

described above, can be expected to bemore skillful than

the deterministic-based probability forecasts described

herein. Thus, the competitive performance of the EP

RI models relative to these operational RI models,

particularly in the Atlantic basin at the 25–40kt (24 h)21

RI thresholds, suggests that applying the EP method-

ology specifically to RI has great promise to provide

forecasts with skill superior to existing operational RI

guidance.

c. Case studies

As is true for TC intensity forecasts in general

(Rappaport et al. 2012; Kaplan et al. 2010), RI/RW

cases provide a major contribution to model errors

in both the North Atlantic and eastern and central

North Pacific basins. For example, RI/RW cases [here

defined by a change in intensity of 30 kt (24 h)21]

comprise just 8.2% of cases across the North Atlantic

basin for the 2017–18 seasons but contribute 16.5% to

the total sum of forecast intensity errors for the EP

model over the same period. Likewise, in the eastern

and central North Pacific basins, RI/RW cases com-

prise 14.1% of forecasts but are responsible for 23.9%

of the total sum of forecast intensity errors for the

EP model over the same period. Below, two repre-

sentative case studies are discussed to provide fur-

ther insight into deterministic model performance

for these cases.

1) MARIA—0000 UTC 18 SEPTEMBER 2017

Maria began as a tropical depression around 1200UTC

16 September 2017 over the tropical Atlantic, but it

rapidly intensified as it moved toward the LesserAntilles,

reaching hurricane intensity by 1800 UTC 17 September

2017. Aided by warm waters and weak vertical wind

shear, Maria continued to rapidly intensify, reach-

ing an intensity of 145 kt just prior to landfall on

Dominica at 0115 UTC 19 September 2017 (Pasch

et al. 2019).

FIG. 6. BSS (as a function of RI threshold) for the uncalibrated EP RI model (light blue),

calibrated EP RI model (blue), SHIPS-RII model (green), logistic model (yellow), Bayesian

model (red), and a consensus of the SHIPS-RII, logistic, and Bayesianmodels (gray) across the

2017–18 TC seasons for the North Atlantic (ATL; top) and eastern and central North Pacific

(PAC; bottom) basins. Note that no verifying forecasts for the 65 kt (72 h)21 RI threshold were

available from the non-EP models, and thus performance at this threshold is not shown. The

number of forecast cases in each homogeneous forecast set is given at the bottom of the figure.

The narrow white bars for each model at each lead time represent the 5th–95th percentile

ranges of each model’s forecasts, as determined via Monte Carlo bootstrapping using 1000

samples (with sample sizes equivalent to the number of forecasts at each lead time) with

replacement.
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While the deterministic EP model accurately forecast

that Maria would intensify (Fig. 8, top), it failed to

predict the extreme intensification rate, resulting in one

of the largest 24-h forecast errors by the EP model over

the 2017–18 seasons. For example, the forecast initial-

ized 0000 UTC 18 September 2017 verified at the con-

clusion of theRI event on 0000UTC 19 September 2017,

just before Maria struck Dominica. While the EP model

forecast Maria to intensify from 75 to 94 kt, Maria in-

tensified to 145 kt. This 70 kt (24 h)21 intensification rate

more than doubled the 30kt (24 h)21 intensification rate

seen over the previous 24 h.

The predictors for the 12 and 24h lead times indicate a

favorable environment for RI, with input values for

CD26, VMPI, and SHDC suggesting climatologi-

cally warm waters to depth and weak vertical wind

shear (Table 3). Additionally, U20C and D200 show

anomalous easterly 200-hPa zonal wind and above-

normal upper-level divergence, the latter of which

has been shown to aid TC intensification (DeMaria

and Kaplan 1999). Despite their large input values,

however, CD26 had little to no impact on the intensity-

change forecast, while U20C and D200 had minor

contributions to the forecast. This is largely because

CD26 is often given little weight and features spar-

ingly in determining which lines get executed, with

the same being generally true for U20C and D200

as well (see the appendix). VMPI, while having a

lesser contribution, contributed positively to the

forecast. Meanwhile, SHDC was one of two primary

positive forecast contributors to the forecast, con-

tributing 5.6 kt to the total 19-kt (24 h)21 forecast

over the two lead times. The other predictor with a

positive forecast contribution is the DELV predic-

tor. The large contribution from DELV is primarily

a function of its frequent appearance in the model

algorithms, while the contribution from SHDC is a

mixture of its weighting in the model algorithms

and in determining which lines get executed (see

the appendix). Consequently, the model responds

to Maria’s ongoing intensification in a low-shear

environment.

The observed intensity change of 70 kt (24 h)21 for

this example is 5.6 standard deviations above the

average 24-h intensity-change forecast by the EP

model and similarly lies within the upper 1% of all

24-h observed intensity changes within the Atlantic

basin. Although the forecast intensity change of

119 kt (24 h)21 is well below what occurred, it is in

the 98th percentile of all 24-h intensity-change fore-

casts by the deterministic EP model (not shown). The

forecast then fits within what the model considers RI,

following how RI was initially defined (from the 95th

percentile of the intensity-change distributions In

other words, the forecast under consideration is un-

representative of the larger set of forecasts to which

FIG. 7. BSS (as a function of RW threshold) for the EP RWmodel across the 2017–18 TC

seasons for the (top) North Atlantic (ATL) and (bottom) eastern and central North Pacific

(PAC) basins. The number of forecast cases in each forecast set is given at the bottom of

the figure.
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the model is trained to forecast. The deterministic EP

model correctly indicates that this forecast scenario is

atypical—albeit within the context of its training data

rather than observations. Similarly, the calibrated EP

RI model forecast a 41% chance of RI at the 25 kt

(24 h)21 threshold, and a 23% chance of RI at the 30 kt

(24 h)21 threshold. While both percentages are low,

they both are in the 98th percentile of all probabilistic

forecasts by the EP model for the given thresholds.

Thus, while the probabilistic EP model also discerns

the correct forecast scenario, forecasting the exact

intensification magnitude is difficult due to the in-

tensity change being on the far tail of the model’s

training data.

2) OTIS—0000 UTC 18 SEPTEMBER 2017

Although Otis (Blake 2018) was hindered by strong

wind shear and associated dry-air intrusion for much

of its lifespan, the TC turned northward and moved

into a weaker vertical wind shear environment on

17 September 2017. This helped mitigate the intru-

sion of dry air into its center and, consequently, Otis

underwent RI, intensifying by 60 kt in 24 h to reach a

peak intensity of 100 kt. As Otis continued north-

ward, however, it again encountered stronger vertical

wind shear, reestablishing the intrusion of dry air into

the storm center. This brought about RW, with Otis’

intensity decreasing 60 kt over the subsequent 24 h to

return to an intensity of 40 kt.

TABLE 3. List of predictor values, in standard anomaly form, and

their relative contribution to the 12- and 24-h intensity forecasts of

TC Maria for the forecast initialized at 0000 UTC 18 Sep 2017.

Predictor

12-h predictor

variable value

(std dev)/contribution (kt)

24-h predictor

variable value

(std dev)/contribution (kt)

DELV 1.3/3.5 0.8/2.1

CD26 1.2/0.0 1.3/0.0

U20C 21.0/0.1 21.0/0.0

D200 1.4/0.4 0.9/0.1

TWAC 0.0/0.0 20.1/0.0

SHDC 21.5/2.8 21.5/2.8

VMPI 0.7/1.4 0.8/1.3

CFLX 0.2/20.4 0.1/20.3

FIG. 8. Retrospective intensity forecasts (colored lines; blues and purples denote earlier-

issued forecasts, whereas yellows and greens denote later-issued forecasts) and observed in-

tensity (black line) for (top) TC Maria (AL152017) and (bottom) TC Otis (EP152017). The

forecasts discussed in section 3c are shown in dashed red lines.
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The EP model generally forecast Otis to strengthen

slightly through its lifespan (Fig. 8, bottom), but it failed

to forecast RI in any forecast verifying on 17 September

2017. Of notable concern is the forecast initializing at the

transition from RI to RW on 0000 UTC 18 September

2017 (red dotted line in Fig. 8, bottom), as this fore-

cast is associated with the largest 24-h forecast error

by both the North Atlantic and eastern and central

North Pacific EP models over the 2017–18 seasons.

Whereas Otis weakened by 60 kt over the follow-

ing 24 h, the EP model forecast Otis to strengthen

to 110 kt by 12 h and to 111 kt by 24 h before pla-

teauing in intensity and rapidly weakening over the

subsequent three days. However, the forecast RW

probability is zero at all thresholds because RW is

defined as a magnitude change from the initial in-

tensity and not over a moving window (i.e., 0–48 h

not 24–48 h).

When looking at the relative contributions from

each input variable at the 12- and 24-h forecast

times, a clear explanation for the EP model’s poor

performance emerges (Table 4). Although the input

value of DELV for the 12-h lead time is well above

normal, corresponding to Otis’ just-completed RI,

the 12-h value of the dry-air predictor (CFLX) is

also large, indicating that a large amount of dry

air is being mixed back into the TC’s circulation.

However, despite their similar magnitudes, the two

variables have distinctly different contributions to

the forecast, with the DELV predictor having a

much larger impact over the first 12 h. At the 24-h

lead time, the value of the DELV parameter drops

notably, whereas the value of the CFLX parame-

ter remains high. However, the positive contribution

from DELV is still more than double the nega-

tive contribution of CFLX. This greater contribution

of DELV not only stems from the weighting of the

parameter in the calculations, but also its role in

the conditional statements and thus in determining

how many lines get executed. Meanwhile, the other

variables feature only modest deviations from cli-

matology and have a mixed impact on the forecast.

As a result, rather than forecasting a sharp change

in intensity, the EP model forecasts are more sub-

dued in their predicted rates of intensity change

given the importance of the DELV parameter to the

forecast.

4. Summary and conclusions

This paper describes the development, application,

and evaluation of two TC deterministic and proba-

bilistic intensity forecast models, one for the North

Atlantic and another for the eastern and central North

Pacific basins, from a large ensemble of evolutionary

algorithms. These algorithms utilize an if-then struc-

ture as well as linear and nonlinear predictor combi-

nations to forecast a change in intensity over a 12-h

period. Run iteratively, these algorithms produce

a deterministic forecast for TC intensity every 12 h

out to 120 h and probabilistic forecasts for RI and RW

at specified thresholds out to 72 h. A set of eight

predictors from the SHIPS developmental dataset,

which are converted to standard anomalies to aid

comparison between variables of dissimilar units,

provide the input data for model training, applica-

tion, and evaluation. After being randomly initialized,

the EP process involving cloning, mutation, and se-

lective pressure drives the algorithms toward skill-

ful predictor combinations. In total, five populations

with 10 000 algorithms are run over 300 iterations,

from which the 100 best-performing algorithms over

all populations and iterations are retained. Bias cor-

rection is then applied to all retained algorithms be-

fore 10 skillful yet diverse algorithms are selected

to be combined through BMC. Finally, BMC is

used to determine the weighting for each of the 10

members to produce the final deterministic model,

from which a PDF is obtained to generate RI/RW

probabilities.

Each model is tested on independent cases from the

2017 and 2018 TC seasons. In the North Atlantic ba-

sin, the deterministic model is 10%–20% more skill-

ful than the ‘‘no skill’’ OCD5 forecast at all leads

except 120 h, with skill comparable to that of the

operational SHIPS and LGEMmodels at these times.

Conversely, for the eastern and central North Pacific

basin, the deterministic model is less skillful than the

‘‘no skill’’ OCD5 forecast and all operational models

at all lead times except 120 h. Calibrated RI forecasts

TABLE 4. List of predictor values, in standard anomaly form,

and their relative contribution to the 12- and 24-h intensity

forecasts of TC Otis for the forecast initialized at 0000 UTC 18

Sep 2017.

Predictor

12-h predictor

variable value

(std dev)/contribution (kt)

24-h predictor

variable value

(std dev)/contribution (kt)

DELV 3.6/15.4 0.8/6.8

CD26 20.4/20.1 20.2/0.0

U20C 1.0/0.7 0.6/0.6

D200 0.4/0.0 0.7/0.0

TWAC 0.3/1.1 0.1/0.2

SHDC 20.8/2.2 20.8/2.5

VMPI 20.6/20.9 20.9/21.6

CFLX 3.2/23.6 2.9/23.2
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are skillful relative to climatology and are competi-

tive with operational RI forecasts at the 25–40 kt

(24 h)21 intensity-change thresholds in the North

Atlantic and for the 25–30 kt (24 h)21 intensity-change

thresholds in the eastern and central North Pacific ba-

sins. However, calibrated RW forecasts in both basins

are not skillful for any intensity-change threshold, and

there are no operational RW forecast models to pro-

vide context for these results. The mixed performance

of the RI and RW models is likely due to the under-

lying probabilistic model being derived from a deter-

ministic model that is trained on all intensity-change

cases (of which there are many more non-RI/RW cases

than there are RI/RW cases) rather than on only RI/RW

cases. Probability calibration has mixed impacts on

forecast skill. An alternative model formulation (e.g.,

one developed only for rapid intensity change, as

with the SHIPS-RII, logistic, and Bayesian models

described in section 3b) is likely necessary to achieve

further skill increases for RI and RW forecasts.

Altogether, the results suggest that the EP method

holds great promise, with substantial room for further

(and in some cases necessary) improvements, for both

deterministic and probabilistic TC intensity-change

predictions.

Selected case studies demonstrate that the model

forecast often contain large contributions from the

DELV predictor (i.e., intensity-change persistence),

which led to difficulties in producing accurate deter-

ministic forecasts for RI and RW cases (as each are

often associated with abrupt intensity changes from

persistence). One might therefore conclude that the

DELV predictor is detrimental to model performance.

While this conclusion is correct in part for RI and RW

cases, it is not true over the larger set of all forecast

cases. The EP process selected the predictor to be

meaningful and therefore weighted it heavily to increase

model skill, based on its training data. Consequently,

over the training data, which are representative of the

full TC populations in each basin, persistence is a re-

liable intensity predictor. Further support for DELV’s

inclusion, especially in the Pacific model, comes from

the fact that improvements over the OCD5 model

tend to be smaller in the Pacific basin than in the

Atlantic (Cangialosi 2019, their Figs. 11 and 13). This

suggests that it is harder to beat climatology and

persistence in the Pacific basin, and as such climato-

logical and persistence parameters should be given

more weight.

However, as noted above, this type of a persistence

forecast can lead to large errors, such as at the onset

or ending of RI and RW. While the importance of

keeping DELV is also supported by its use in both

the OCD5 and SHIPS models (Knaff et al. 2003;

DeMaria and Kaplan 1994; Shimada et al. 2018), it

is worth investigating whether other information can

be leveraged so that the model has a priori knowledge

of when a persistence forecast may not be warranted.

One method to do this would be to introduce a vari-

able such as the difference between the intensity of

the storm and its maximum potential intensity, as

is done in the LGEM model (DeMaria 2009). This

would help inform the model on whether a TC is

located toward the higher or lower end of the clima-

tological intensity distribution and thus know when

a TC is more or less capable of undergoing RI or RW.

Structural information derived from geostationary

and polar-orbiting sensors operating at infrared and

microwave wavelengths, in which structures that

reliably distinguish between RI and non-RI events

can be identified (e.g., Jiang and Ramirez 2013;

Rozoff et al. 2015; Fischer et al. 2018), also offers

promise for a priori discernment of cases when a

persistence forecast is less warranted.

The quasi-Gaussian nature of intensity change and

the bias toward TCs of weaker intensities in the his-

torical record is challenging to TC intensity fore-

casting, as the cases that are of highest interest (RI,

RW, and intense hurricanes) are the least prevalent

across all forecast times. This is a particular challenge

to training machine-learning algorithms, which may

sacrifice performance on these select few cases to

perform well across all cases as a whole. Different

cost functions (e.g., using RMSE rather than MAE at

the BMC weight-determination stage, or by weight-

ing errors from stronger TCs more heavily in the

training process or at the BMC weight-determination

stage) and/or different model formulations [e.g., using

an alternative skill metric such as BSS or continuous

ranked probability score to derive the BMCweights for

probabilistic applications, developing altogether sepa-

rate deterministic and probabilistic RI/RW models, or

usingmore advanced versions of the EPmethod such as

the coevolution predator–prey ecosystem described by

Roebber and Crockett (2019)] may hold promise for

addressing these challenges, and future work aims

to consider these approaches for TC intensity-change

prediction.
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APPENDIX

Model Algorithms

After bias correction and BMC weighting are per-

formed (section 2c), seven algorithms are retained

with nonzero weight for the Atlantic basin and two

algorithms are retained with nonzero weight for the

eastern and central North Pacific basin. These algorithms,

including their BMC-determined weights and bias-

correction factors, are in Table A1 for the Atlantic

basin and Table A2 for the North Pacific basin. The

algorithm number for each is included only for com-

pleteness; it has no specific meaning.

Algorithms are given by the form prescribed by

Eq. (1) in section 2b. The individual line numbers at left

refer to the i within (1). The Vin refer to predictor

TABLE A1. Atlantic model.

Vi1 Ri1 Vi2 Ci1 3 Vi3 Oi1 Ci2 3 Vi4 Oi2 Ci3 3 Vi5

Algorithm 6: weighting 5 0.166 67; bias («) 5 0.52

1 IF SHDC # TWAC THEN 0.145 98 3 VMPI 1 20.447 44 3 U20C 3 20.1582 3 D200

2 IF SHDC # DELV THEN 0.361 27 3 DELV 3 20.0746 3 10 3 0.236 45 3 DELV

3 IF SHDC # SHDC THEN 20.954 43 3 DELV 1 0.954 13 3 DELV 1 0.023 58 3 10

4 IF DELV # DELV THEN 20.188 35 3 SHDC 1 0.408 03 3 DELV 1 20.247 38 3 CFLX

5 IF VMPI . TWAC THEN 20.947 45 3 DELV 3 0.181 54 3 VMPI 3 0.849 04 3 D200

Algorithm 8: weighting 5 0.083 33; bias («) 5 20.57

1 IF CFLX # DELV THEN 0.902 16 3 VMPI 3 0.653 79 3 D200 3 0.216 44 3 DELV

2 IF SHDC # DELV THEN 0.361 27 3 DELV 3 20.0746 3 10 3 0.236 45 3 DELV

3 IF SHDC # SHDC THEN 20.954 43 3 DELV 1 0.954 13 3 DELV 1 0.023 58 3 10

4 IF DELV # DELV THEN 20.188 35 3 SHDC 1 0.408 03 3 DELV 1 20.247 38 3 CFLX

5 IF TWAC # U20C THEN 20.325 57 3 TWAC 1 20.205 41 3 VMPI 3 20.385 64 3 CFLX

Algorithm 9: weighting 5 0.083 33; bias («) 5 0.28

1 IF CFLX . U20C THEN 20.263 81 3 U20C 3 0.149 71 3 VMPI 1 0.2113 3 VMPI

2 IF SHDC # DELV THEN 0.361 27 3 DELV 3 20.0746 3 10 3 0.236 45 3 DELV

3 IF SHDC # SHDC THEN 20.954 43 3 DELV 1 0.954 13 3 DELV 1 0.023 58 3 10

4 IF DELV # DELV THEN 20.188 35 3 SHDC 1 0.408 03 3 DELV 1 20.247 38 3 CFLX

5 IF SHDC # CD26 THEN 20.427 66 3 TWAC 3 0.361 28 3 CFLX 3 0.033 89 3 SHDC

Algorithm 34: weighting 5 0.083 33; bias («) 5 0.21

1 IF TWAC # CFLX THEN 0.317 31 3 CFLX 3 20.905 71 3 D200 3 20.217 76 3 SHDC

2 IF SHDC . CFLX THEN 0.252 37 3 TWAC 1 20.363 17 3 TWAC 3 0.279 41 3 CFLX

3 IF DELV . TWAC THEN 0.033 56 3 CD26 3 0.098 53 3 DELV 1 0.038 53 3 10

4 IF VMPI # VMPI THEN 0.335 92 3 DELV 3 20.212 64 3 TWAC 1 0.157 55 3 DELV

5 IF SHDC # SHDC THEN 20.182 06 3 SHDC 1 0.1172 3 VMPI 1 20.176 64 3 CFLX

Algorithm 35: weighting 5 0.083 33; bias («) 5 0.10

1 IF CFLX # SHDC THEN 0.862 28 3 CD26 1 0.413 23 3 TWAC 1 20.853 29 3 CD26

2 IF CD26 . D200 THEN 20.109 33 3 DELV 1 0.543 57 3 TWAC 3 20.287 23 3 CD26

3 IF DELV . TWAC THEN 0.033 56 3 CD26 3 0.098 53 3 DELV 1 0.038 53 3 10

4 IF VMPI # VMPI THEN 0.335 92 3 DELV 3 20.212 64 3 TWAC 1 0.157 55 3 DELV

5 IF SHDC # SHDC THEN 20.182 06 3 SHDC 1 0.1172 3 VMPI 1 20.176 64 3 CFLX

Algorithm 49: weighting 5 0.166 67; bias («) 5 0.19

1 IF D200 # VMPI THEN 0.323 67 3 TWAC 1 20.156 24 3 D200 3 0.118 85 3 CFLX

2 IF D200 # SHDC THEN 20.242 29 3 TWAC 3 0.0833 3 DELV 1 20.074 26 3 DELV

3 IF DELV . TWAC THEN 0.033 56 3 CD26 3 0.098 53 3 DELV 1 0.038 53 3 10

4 IF VMPI # VMPI THEN 0.335 92 3 DELV 3 20.212 64 3 TWAC 1 0.157 55 3 DELV

5 IF SHDC # SHDC THEN 20.182 06 3 SHDC 1 0.1172 3 VMPI 1 20.176 64 3 CFLX

Algorithm 53: weighting 5 0.25; bias («) 5 20.67

1 IF CD26 # CD26 THEN 20.595 28 3 10 3 20.831 68 3 TWAC 3 20.1173 3 TWAC

2 IF D200 # 10 THEN 20.789 33 3 VMPI 3 0.264 22 3 TWAC 3 20.782 23 3 CFLX

3 IF DELV . TWAC THEN 0.033 56 3 CD26 3 0.098 53 3 DELV 1 0.038 53 3 10

4 IF VMPI # VMPI THEN 0.335 92 3 DELV 3 20.212 64 3 TWAC 1 0.157 55 3 DELV

5 IF SHDC # SHDC THEN 20.182 06 3 SHDC 1 0.1172 3 VMPI 1 20.176 64 3 CFLX
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variables, a full listing of which is given in Table 1. Ri1

refers to one of the allowable relational operators of #

or.. TheCin refer to coefficients in the range of [21, 1].

The Oin refer to one of the allowable arithmetic opera-

tors of 1 or 3. For each, n denotes the nth instance of

the parameter on a given line.
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