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Synoptic Meteorology I: Kinematic Properties 

For Further Reading 

The distinction between streamlines and trajectories is illustrated by Section 4.5 of Mid-Latitude 

Atmospheric Dynamics by J. Martin and Sections 3-6 and 3-8 of Weather Analysis by D. Djurić. 

Kinematic properties of the wind field are discussed in Section 1.4 of Mid-Latitude Atmospheric 

Dynamics and Section 4-9 of Weather Analysis. Practical kinematics are introduced in Section 4-

3 of Weather Analysis. 

What is the Wind? 

Qualitatively, we understand the wind reflecting the air’s (three-dimensional) motion. Before we 

proceed, however, it is worthwhile to quantitatively define the wind. In the Cartesian coordinate 

system, an air parcel’s location in two dimensions is defined as (x,y). Depending upon our choice 

of vertical coordinate, an air parcel’s vertical position may be defined as z or p. Wind, therefore, 

is simply defined as the change in the air parcel’s location with time, i.e., 
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In (1), for z as the vertical coordinate, ),,( zyxx =


 and ),,( wvuv =


. With p as the vertical 

coordinate, ),,( pyxx =


 and ),,( vuv =


. 

Streamlines and Trajectories 

A streamline represents a line that is tangent (or parallel) to the wind at a given location. Recall 

that under the constraint of geostrophic balance, height contours on middle-to-upper tropospheric 

isobaric charts are parallel to the wind with greater packing for faster wind speeds. The same basic 

idea applies to streamlines. Although streamlines do not have numerical values ascribed to them, 

velocity magnitude (or wind speed) is inferred from streamline spacing. Streamlines that are more 

densely packed together imply a faster wind speed, while streamlines that are less densely packed 

together imply a slower wind speed. Unlike isopleths, streamlines can stop and start on a chart. 

This occurs most commonly where a discontinuity in the wind exists, such as along a front. While 

streamlines do not intersect, they may diverge from or converge to a point on the chart. This occurs 

most commonly with areas of high and low pressure near the surface, respectively. 

Conversely, a trajectory represents the path that an air parcel follows through time. As an air parcel 

moves from one location to another, not only does its location change, so too does the wind itself 

(as documented by the equations of motion). This highlights an important distinction between 

streamlines and trajectories: streamlines are the path that an air parcel would follow if the wind 

did not change with time, while trajectories are the path that an air parcel follows while accounting 
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for the fact that the wind does change with time. Note also that while streamlines are often analyzed 

only using the horizontal wind, trajectories are typically analyzed using the fully three-dimensional 

wind. A forward trajectory depicts where the air parcel moves to as time moves forward, while a 

backward trajectory depicts where an air parcel came from at previous times. While streamlines 

can be manually analyzed on synoptic charts, trajectories are typically analyzed using computer-

based methods (e.g., the HYSPLIT trajectory model). 

A generic equation for a trajectory is given by: 

( ) ( ) ( )
1
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1 0 , , ,

t

t

x t x t v x y p t dt= +   (2) 

 

In other words, the position of the air parcel at time t1 is equal to the position of the air parcel at 

time t0 plus the integrated motion of the air parcel over the time interval between t0 and t1. For a 

forward trajectory, t1 > t0; for a backward trajectory, t1 < t0. Note that v


is a function of time – in 

other words, it changes with time. Thus, knowledge of how v


 changes with time over the motion 

of the air parcel is necessary to calculate the air parcel’s trajectory. But, we don’t know what the 

wind along the trajectory will be like until we know the path of the trajectory, nor do we know the 

path of the trajectory until we know the wind along the trajectory! As a result, (2) is typically 

solved using iterative (i.e., successive guesses) means, and this is the chief reason why trajectories 

are typically only analyzed using computer-based methods.  

In Fig. 1, streamlines and forward trajectories are presented for an eastward-moving trough (which 

we assume to maintain a consistent shape with time). We consider three separate scenarios: 

• Case 1: An air parcel moves slower than the trough. Starting at A, the air parcel initially 

moves due east. However, because the trough moves east faster than does the air parcel, 

the air parcel falls behind and ends up in the northwesterly flow behind the base of the 

trough. As a result, its motion turns toward the east-southeast. This results in the trajectory 

given by A->D.  

• Case 2: An air parcel moves at the same speed as the trough. Starting at A, the air parcel 

initially moves due east. Because the trough and air parcel move to the east at the same rate 

of speed, the air parcel is always located in the base of the trough where the wind is directed 

due east. As a result, its motion remains toward the east. This results in the trajectory given 

by A->C. 

• Case 3: An air parcel moves faster than the trough. Starting at A, the air parcel initially 

moves due east. However, because it does so faster than does the trough, the air parcel ends 

up in the southwesterly flow ahead of the base of the trough. As a result, its motion turns 

toward the east-northeast. This results in the trajectory given by A->B. 
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Figure 1. Streamlines (curved lines) and forward trajectories (bold vectors) in an eastward-moving 

trough. Streamlines at the initial time are given by the solid curved lines while streamlines at the 

later time are given by the dashed curved lines. Three forward trajectories are considered: A->B, 

A->C, and A->D. Please refer to the text above for further details. Figure reproduced from Mid-

Latitude Atmospheric Dynamics by J. Martin, their Fig. 4.22.  

When we considered atmospheric force balances in natural coordinates, we often encountered an 

R term, which we identified as the radius of curvature. It should be noted that this R explicitly 

represents the radius of curvature of a trajectory rather than the radius of curvature of a streamline. 

The two radii can be quite different. For example, the streamlines in Fig. 1 are cyclonically curved, 

such that R > 0. The forward trajectory A->B is cyclonically curved, but less so than the streamline. 

Meanwhile, the forward trajectory A->C is not curved, whereas the forward trajectory A->D is 

anticyclonically curved (such that R < 0). The two radii are only equal when the wind does not 

change with time. Thus, when evaluating force balances, bear in mind that where possible R should 

represent the curvature of the air parcel’s motion – that given by its trajectory.  

Kinematics of the Wind Field 

Let us consider the horizontal wind, as given by the components u, representing motion in the east-

west direction, and v, representing motion in the north-south direction. Intuitively, we know that 

both u and v are not constant from one location to another – in other words, they change in both 

the east-west (or x) and north-south (or y) directions. Representing these changes in terms of partial 

derivatives, we have: 
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Let us now consider combinations of two of these four terms. In our combinations, we require that 

one term include a partial derivative of u with respect to one position variable and a partial 

derivative of v with respect to the other position variable. This requirement means that there are 

four such unique combinations: 
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We define each of the terms (a) through (d) as follows: 

• Divergence, or  , is given by term (a). In vector form, it can be expressed as v

 . 

• Stretching deformation, or STD, is given by term (b). 

• Shearing deformation, or SHD, is given by term (c). 

• Vorticity, or  , is given by term (d). Formally, this is the vertical vorticity, and only that 

part which does not include the effects of Earth’s rotation; the full vorticity includes other 

terms that we are not considering here. In vector form, vertical vorticity can be expressed 

as ( )vk


ˆ , with k̂  emphasizing that this vorticity is rotation about a vertical axis (i.e., 

in the x-y plane). 

How do each of these kinematic properties contribute to the wind? Let us first consider a 

mathematical expression for both u and v. We know that each vary in the x and y directions, such 

that u = u(x,y) and v = v(x,y). Because both are continuous functions in space – in other words, u 

and v are defined everywhere – we can express each in terms of a Taylor series expansion. The 

generic form of a Taylor series expansion of a variable f that is a function of x and y is given by: 
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In (3), subscripts of 0 are meant to evaluate a quantity evaluated at the air parcel’s origin. The term 

at the end of (3), involving partial derivatives of both x and y, is typically neglected. If we apply 

(3) to u and v and keep only the n = 1 terms – thus neglecting terms involving second- and higher-

order partial derivatives as a result of being small – from the first two summation terms, we obtain: 
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Equation (4) states that the velocity at any location x,y is equal to the velocity at the origin (0,0) 

plus measures of how the velocity changes in space – the partial derivative terms – multiplied by 

the distance from the origin.  

If we rewrite (4) in terms of (a) through (d) above, we obtain: 
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Equation (5) demonstrates that the wind field can be expressed in terms of a linear combination of 

the four kinematic elements – divergence, stretching deformation, shearing deformation, and 

vertical vorticity – described above as well as a translational component given by u0 and v0. 

We now wish to describe the wind that results from each kinematic element in isolation. 

Translation Flow 

Translation flow is defined where u(x,y) = u0 and v(x,y) = v0. In this case, an air parcel moves at a 

constant velocity, as given by (u0,v0). Because the velocity is constant everywhere, streamlines of 

the flow are given by straight lines. Representative wind vectors are presented in Fig. 2.  

 

Figure 2. Example of pure translation flow, given by u(x,y) = u0 and v(x,y) = v0, where u0 and y0 

are arbitrary constant values. Note how an object placed in this flow would simply move with the 

flow – it would not rotate, nor would it change shape or size. 

Pure Divergence 

Pure divergence is defined where u0, v0, 0 , STD0, and SHD0 are all equal to 0 while 0  is equal 

to 1. In this case, (5) becomes: 
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Wind vectors representing solutions to (6) are presented in Fig. 3.  

 

Figure 3. Example of pure divergence flow. Note how the wind is directed in all directions away 

from the origin – i.e., air parcels diverge from the origin. If we let 0  be equal to -1, then the wind 

vectors would be directed in all directions toward the origin, denoting convergence. Adapted from 

Mid-Latitude Atmospheric Dynamics by J. Martin, their Fig. 1.8. 

Pure Vertical Vorticity 

Pure vertical vorticity is defined where u0, v0, 0 , STD0, and SHD0 are all equal to 0 while 0  is 

equal to 1. In this case, (5) becomes: 

yyxu
2

1
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Wind vectors representing solutions to (7) are presented in Fig. 4. 
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Figure 4. Example of pure vertical vorticity, or rotational, flow. Note how the wind is directed in 

a counterclockwise fashion around the origin. The case of 0  = 1 defines cyclonic (in the Northern 

Hemisphere) or counterclockwise flow, whereas the case of 0  = -1 defines anticyclonic (in the 

Northern Hemisphere) or clockwise flow. Adapted from Mid-Latitude Atmospheric Dynamics by 

J. Martin, their Fig. 1.9. 

Pure Stretching Deformation 

Pure stretching deformation is defined where u0, v0, 0 , 0 , and SHD0 are all equal to 0 while 

STD0 is equal to 1. In this case, (5) becomes: 
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Wind vectors representing solutions to (8) are presented in Fig. 5. The solution presented in Fig. 5 

implies convergence along the y-axis and divergence along the x-axis. Deformation and divergence 

are not the same, however! Consider a square embedded within the pure divergence solution in 

Fig. 3. The wind changes the size and thus area of the square but not its shape. By contrast, consider 

a square embedded within the pure stretching deformation solution in Fig. 5. The wind changes 

the shape of the square, as it becomes rectangular as it is compressed along one axis and stretched 

along another, though it can be shown that the area of the feature does not change. We instead 

refer to the compression of the flow as confluent flow and the stretching of the flow as diffluent 

flow. 
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Figure 5. Example of pure stretching deformation flow. We find that the flow is stretched outward 

along the x-axis and compressed inward along the y-axis. The axis along which the flow is 

stretched (here, the x-axis) is known as the axis of dilatation and the axis along which the flow is 

compressed (here, the y-axis) is known as the axis of contraction. Adapted from Mid-Latitude 

Atmospheric Dynamics by J. Martin, their Fig. 1.10. 

Pure Shearing Deformation 

Finally, pure shearing deformation is defined where u0, v0, 0 , 0 , and STD0 are all equal to 0 

while SHD0 is equal to 1. In this case, (5) becomes: 
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Wind vectors representing solutions to (9) are presented in Fig. 6. Note that typically, we are not 

concerned with stretching deformation versus shearing deformation but rather with the total 

deformation, which we can define as: 

22 SHDSTDD +=  (10) 
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Figure 6. Example of pure shearing deformation flow. The solution is identical to that for pure 

stretching deformation, except rotated 45° to the left. Adapted from Mid-Latitude Atmospheric 

Dynamics by J. Martin, their Fig. 1.12. 

The Full Wind 

In observations, the full wind cannot be represented by just one of the basic solutions presented in 

Figs. 2-6. Rather, the full wind represents a combination of these solutions, as implied from (5). 

We nevertheless can analyze wind observations on synoptic charts and qualitatively characterize 

the flow’s characteristics – whether divergent, rotational, deformative, or translation in nature. 

Practical Kinematics 

To facilitate qualitative evaluation of divergence and vorticity from synoptic data, we now wish to 

consider how each may be expressed in natural coordinates. Recall that in a natural coordinate 

system, there exist two horizontal coordinates: s, following the flow, and n, perpendicular to the 

flow. The positive s-axis is defined along the wind in the direction in which it is blowing, while 

the positive n-axis is perpendicular and to the left of the s-axis.  

Presented without derivation, the natural coordinate forms of divergence and vorticity are: 

n
V
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n
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In (11), V is the wind speed (formally, in m s-1), R is the radius of curvature (where R > 0 indicates 

cyclonic flow; formally, in m), and α is the wind direction (formally, in radians). A full derivation 

of (11) is provided in Appendix H of Weather Analysis by D. Djurić. 
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Divergence in Natural Coordinates 

The terms on the right-hand side of (11a) represent speed divergence and diffluence, respectively. 

Let us consider each individually.  

The speed divergence term, or 
s

V




, represents the change in wind speed along a streamline. If the 

wind speed increases along a streamline, this term is positive, indicating speed divergence. 

Conversely, if the wind speed decreases following the flow, this term is negative, indicating speed 

convergence. Examples of both are provided in Fig. 7. 

 

Figure 7. Conceptual examples of speed divergence (blue), where the wind speed (given by the 

length of the arrow) increases following the flow, and speed convergence (red), where the wind 

speed decreases following the flow. Note that the orientation of the n- and s-axes will change for 

other flow configurations. 

The diffluence term, or 
n

V



−


, is a function of the change in wind direction perpendicular to the 

flow. As we noted before, α is in radians. The following equation can be used to convert from 

degrees to radians in meteorological convention: 

deg
180



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
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


=rad  (12) 

 

where αdeg = 0°/360° for wind out of the north, 90° for wind out of the east, 180° for wind out of 

the south, and 270° for wind out of the west. In radians, these values correspond to 0 (or 2π), 0.5π, 

π, and 1.5π, respectively. 
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In the case where wind angle increases along the positive n-axis (i.e., the horizontal wind direction 

turns clockwise along the positive n-axis), 
n


 is positive. Since V is positive at the location being 

considered, the leading negative on this term indicates that the diffluence term is negative. This is 

identified with confluence. Conversely, in the case where wind angle decreases along the positive 

n-axis (i.e., the horizontal wind direction turns counterclockwise along the positive n-axis), 
n


 is 

negative. Given the convention on V, the diffluence term is positive, which we identify with 

diffluence. Examples of both confluence and diffluence are depicted in Fig. 8.  

 

Figure 8. Conceptual examples of confluence (left) and diffluence (right). The wind is directed 

toward a point with confluence and spreads apart from a point with diffluence. Note that the 

orientation of the n- and s-axes will change for other flow configurations. 

It is possible to have speed divergence coincident with confluence or to have speed convergence 

coincident with diffluence. Thus, care must be taken when evaluating divergence on a weather 

map to not automatically conflate diffluence with divergence or confluence with convergence. 

Vorticity in Natural Coordinates 

The terms on the right-hand side of (11b) represent curvature and normal shear, respectively. As 

with divergence, let us consider each individually. 

The curvature term, or 
R

V
, is a function of the wind speed and the radius of curvature. For 

cyclonically curved flow, where R > 0, this term is positive. For anticyclonically curved flow, 

where R < 0, this term is negative. The magnitude of this term is largest when the wind speed is 

large and/or the magnitude of the radius of curvature is small. Small positive, large positive, small 

negative, and large negative values of this term are illustrated in Fig. 9. 
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Figure 9. Conceptual examples of anticyclonic curvature (left) and cyclonic curvature (right) for 

large magnitudes of R and small V (top) and small magnitudes of R and large V (bottom). Recall 

that R is defined by the distance of the curved air flow from the central point around which it 

rotates. Large V and small R (and vice versa) are often, but not necessarily always, found in 

conjunction with one another. 

The normal shear term, or 
n

V




− , is a function of the change in wind speed perpendicular to the 

flow. If the wind speed decreases along the positive n-axis, 
V

n




is negative. The leading negative 

sign results in the normal shear term being positive, representing cyclonic shear. Conversely, if 

the wind speed increases along the positive n-axis, 
V

n




 is positive. The leading negative sign 

results in the normal shear term being negative, representing anticyclonic shear. Examples of each 

are provided in Fig. 10.  

Recall that we first defined vertical vorticity as being associated with rotation. Conceptually, we 

tend to view rotational flow from the concept of the flow being curved, such as in Fig. 9. However, 

from Fig. 10, it is evident that vertical vorticity can exist even when the flow is straight if there is 

horizontal – or, more exactly, normal – wind shear. 
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Figure 10. Conceptual examples of (a) positive and (b) negative normal shear terms. In the former, 

an object placed in the flow will acquire cyclonic (counterclockwise) rotation, whereas in the latter, 

an object placed in the flow will acquire anticyclonic (clockwise) rotation. Note that the orientation 

of the n- and s-axes will change for other flow configurations. 

 

Vorticity and Divergence of the Geostrophic Wind 

In the above, we considered divergence and vorticity in terms of the full wind. We now desire to 

consider the divergence and vorticity of the geostrophic wind. First, recall the definition of the 

geostrophic wind expressed in isobaric coordinates: 
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Let us first consider the vorticity of the geostrophic wind. The geostrophic relative vorticity is 

simply equal to the relative vorticity with ug and vg substituted for u and v, i.e., 
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Note that the Coriolis parameter f does not change in the x-direction, such that the partial derivative 

of 1/f with respect to x is exactly zero. The Coriolis parameter does change in the y-direction, such 

that the partial derivative of 1/f with respect to y is not zero. However, the value of this term over 

finite meridional distances is small enough to be neglected. Thus, assuming that f is constant with 

respect to both x and y, (14) becomes: 
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In (15), 
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= and is known as the Laplacian operator. Recall that the second partial 

derivative of a field returns a measure of its concavity; the second partial derivative is positive for 

fields that are concave up (or convex) whereas it is negative for fields that are concave down. 

Consider, then, a trough and a ridge. Isopleths of geopotential height in association with a trough 

are convex, whereas isopleths of geopotential height in association with a ridge are concave down. 

Consequently, the geostrophic relative vorticity is positive (or cyclonic) with a trough, maximized 

in its base, and negative (or anticyclonic) with a ridge, most negatively so at its apex. This makes 

sense: the flow around a trough is cyclonic, whereas the flow around a ridge is anticyclonic. When 

the magnitude of the local Φ minimum or maximum is large, the geostrophic relative vorticity also 

has large magnitude (and vice versa). This makes sense: a large magnitude to the local Φ minimum 

or maximum implies large horizontal Φ gradients and thus large geostrophic winds. 

Now let us consider the divergence of the geostrophic wind. This is simply equal to the divergence 

of the full wind with ug and vg substituted for u and v, i.e., 
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Again, note that while the Coriolis parameter f is constant in the x-direction, it is not constant in 

the y-direction. But, if we approximate f as being constant in the y-direction, (16) becomes: 






























−
















−=

xyyxf
g

1
  (17) 

 

If we commute the order of one set of the partial derivatives in (17), we find that the term inside 

the outer parentheses is zero, such that 0=g . In other words, the geostrophic wind is very nearly 

non-divergent! 

Since agg vvv
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=+=+= . In other words, the divergence 

of the full wind can be represented (to first approximation, at least) by the divergence of the 

ageostrophic wind. As we will soon see, this has important implications for vertical motions within 

the troposphere. 


