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Synoptic Meteorology I: Map Projections and Coordinate Systems 

For Further Reading 

Section 3-1 and Appendix G of the Djurić Weather Analysis textbook provide useful information 

regarding map projections and common vertical coordinate systems. Section 3.2 of Numerical 

Weather and Climate Prediction provides useful information regarding map projections with an 

emphasis on applying them to numerical models. Chapter 2 of An Introduction to Dynamic 

Meteorology provides useful information regarding Eulerian and Lagrangian reference frames. 

An Introduction to Atmospheric Scales of Motion 

Atmospheric phenomena may be found across a wide range of both time, or temporal, and space, 

or spatial, scales. Consequently, it is common to classify meteorological phenomena by their 

typical duration and horizontal extent. The most-commonly used classifications for doing so are: 

• Microscale:   ≤ 10 km, minutes 

• Mesoscale:   10-1000 km, hours to approximately one day 

• Synoptic-Scale: 1000-10000 km, one to seven days 

• Planetary-Scale: ≥ 10000 km, beyond one week 

Note, however, that the distinctions between individual classifications are arbitrary in nature. 

Furthermore, many atmospheric phenomena – and the physical and dynamical processes that 

govern their formation and evolution – straddle the dividing lines between different classifications. 

In this class, we are primarily interested in phenomena that inhabit and physical processes that 

occur on the synoptic-scale and, to lesser extent, the larger end of the mesoscale. These phenomena 

form and evolve within the environment established by the planetary-scale, and in turn these 

phenomena influence the formation and evolution of microscale and mesoscale features. Thus, 

though our focus may lie on the synoptic-scale, and in specific upon the middle latitudes, what we 

learn here is of importance to weather analysis and forecasting across scales. 

Map Projections 

As we know, the Earth is spherical – or, to be precise, nearly so. However, weather data is almost 

always displayed, interpreted, and analyzed in two dimensions. As a result, we need some means 

of accurately representing the three-dimensional Earth upon a two-dimensional sheet of paper or 

computer screen. For this, we utilize a map projection. 

Map projections are geometric, or mathematical, relationships that translate information from a 

sphere to a flat surface. There exist several desirable traits for any map projection. These include: 

• Preservation of angles. Angles on the flat surface and sphere should be equivalent. 
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• Preservation of areas. Areas on the flat surface and sphere should be equivalent. 

• Preservation of shapes. Shapes on the flat surface and sphere should be equivalent. 

• Correct directions. Cardinal directions on the flat surface and sphere should be equal. 

• Shortest distance between two lines should be a great circle. 

No individual map projection can satisfy all five of these considerations; a map projection is 

merely an approximation to the spherical Earth. In the atmospheric sciences, the most important 

consideration is that angles be preserved. This is particularly important for the accurate 

representation of kinematic properties such as wind, vorticity, and divergence that we will discuss 

in more detail later this semester. 

The type of map projection that enables angles to be preserved is known as a conformal map 

projection. Note that the latitude and longitude lines on a conformal map projection are 

perpendicular to each other everywhere. The most commonly used types of conformal map 

projections in synoptic meteorology are the Lambert conic, Mercator, and polar stereographic 

map projections. These map projections do not preserve areas or shapes, but their distortion is 

small over specific latitudes that vary between projections. As a result, we typically apply these 

projections only over the limited ranges of latitudes for which area and shape distortion are small. 

 

Figure 1. Graphical depiction of how the spherical Earth is projected onto the Mercator (left), 

Lambert conic (middle), and polar stereographic (right) conformal map projections. Each 

projection is created by projecting outward from the Equator to the flat map surface. Note the 

tangent character to the sphere and plane for the Mercator and polar stereographic projections, 

respectively, but the secant character to the cone for the Lambert conic projection. 

The Lambert conic map projection is obtained by fitting a cone with tip directly above a pole 

secant to the Earth. The secant points, or where this cone cuts through the Earth, are typically taken 
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to be at 30° and 60° latitude. The Mercator map projection is obtained by fitting a cylinder tangent 

to the Earth at the Equator. Finally, the polar stereographic map projection is obtained by fitting a 

plane tangent to the Earth at the North or South Pole. Graphical examples of how each projection 

is obtained are in Fig. 1, while sample maps utilizing each projection are in Figs. 2-4. 

 

Figure 2. Example Mercator map projection. Note how Greenland is depicted as being much larger 

than Australia, when in fact the surface of Australia is over 3.5 times larger than Greenland. This 

is emblematic of the higher-latitude distortion of the Mercator projection. Image obtained from 

Google Maps. 

 

Figure 3. Example Lambert conic map projection encompassing the continental United States. 

Note the orientation of the latitude (solid black) and longitude (dashed color) lines, as well as the 

“pinching” of the map at its top (e.g., higher latitudes) compared to its bottom. 
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Figure 4. Example polar stereographic map projection encompassing the Northern Hemisphere. 

Note the circular orientation of the latitude lines (solid black) as well as the convergence of the 

longitude lines (dashed color) at the North Pole. 

An important note for us to consider moving forward is the representation of the cardinal directions 

on the maps associated with each projection. Although the latitude and longitude lines are always 

locally perpendicular on all three of the conformal map projections we have considered, they are 

not universally perpendicular for the Lambert conic and polar stereographic projections. Thus, true 

north is only always to the top of the map for the Mercator projection; for the other projections, it 

is parallel to a line of constant longitude. Likewise, true east is only always to the right side of the 

map for the Mercator projection; for the other projections, it is parallel to a line of constant latitude. 

The degree to which distances, and thus by extension areas and shapes, are distorted in conformal 

map projections can be expressed by what is known as the map-scale factor, given by: 
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In the above, ∆xmap refers to the horizontal distance between two points on the conformal map and 

∆xearth refers to the horizontal distance between the same two points on the Earth. On Fig. 1, the 

distance on the perimeter of the blue circle between two adjacent grey arrows is Δxearth, whereas 

the corresponding distance on the black line to which the grey arrows extend is Δxmap. The case of 

m = 1 represents no distortion; i.e., the distance between two points on the map and Earth are equal. 

For each of our conformal map projections, the distortion is smallest at and near the latitudes where 

the cone, cylinder, or plane intersect or lie tangent to the Earth. It grows larger, sometimes rapidly 

so, as you move away from this/these latitude(s). 
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We desire that the map-scale factor be as close to 1 as possible, or roughly between 0.9 and 1.1. 

In Fig. 5, curves of the map-scale factor as a function of latitude for each of our conformal map 

projections are presented. We find that the map-scale factor falls within this range from the Equator 

to about 30°N for the Mercator, 20°N to 70°N for the Lambert conic, and 50°N to 90°N for the 

polar stereographic map projection. Given our interest in studying mid-latitude synoptic-scale 

meteorology, the Lambert conic projection will generally be our projection of choice this semester. 

 

Figure 5. Map-scale factor as a function of latitude for the Mercator (upper left), Lambert conic 

(upper right), and polar stereographic (bottom) map projections. For the Mercator and polar 

stereographic projections, please analyze the dashed curves; for the Lambert conic projection, 

please analyze the solid curve. Figure obtained from Numerical Weather and Climate Prediction 

by T. T. Warner, their Fig. 3.5. 

Horizontal Coordinate Systems 

Most generally, our horizontal coordinates are given by x, referring to the east-west (or zonal) 

direction, and y, referring to the north-south (or meridional) direction. These horizontal coordinates 

are known as Cartesian coordinates and are geometric in nature. The positive x-axis always points 

to the east, while the positive y-axis always points to the north. As one might expect, care must be 

taken to correctly define the x- and y-axes on Lambert conic, polar stereographic, and other related 

conformal projections where latitude and longitude lines are not universally parallel.  

Because the Earth is spherical, or very nearly so, spherical coordinates are often utilized. A 

spherical coordinate system is one in which the horizontal coordinates are not x and y but, rather, 

are latitude ( ) and longitude (θ). When an isolated, cylindrically-shaped feature (e.g., a cyclone) 
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is being analyzed, cylindrical coordinates may be used. A cylindrical coordinate system is one in 

which the horizontal coordinates are radius (r), or distance, and azimuth (λ), or angle.  

It is possible to transform equations between Cartesian, spherical, and cylindrical coordinates. 

Except where otherwise stated, however, our focus in this class will be on the analysis and 

interpretation of data presented in Cartesian coordinates. Many Calculus textbooks provide basic 

transform relationships for each coordinate system, while many dynamic meteorology textbooks 

provide applications of such relationships to the equations governing atmospheric motions.  

It is also possible to define what is known as a natural coordinate system. A natural coordinate 

system is one defined not based upon the geography and/or geometry of the Earth but, rather, based 

upon the local air flow (e.g., wind). In a natural coordinate system, there exist two horizontal 

coordinates: s, following the flow (streamwise), and n, perpendicular (normal) to the flow. The 

positive s-axis is defined in the direction to which the wind is blowing, while the positive n axis is 

defined perpendicular and to the left of the positive s-axis, as depicted in Fig. 6 below. We will 

discuss natural coordinates in more detail at times throughout this semester. 

 

Figure 6. Graphical example of Cartesian (x, y; in grey) and natural (s, n; in black) coordinate 

systems. Note how the y-axis points to the north and the x-axis points to the east, whereas the s-

axis points along the wind (depicted by a streamline in blue) and the n-axis points perpendicular 

and to the left of the s-axis. At every location, the x- and y-axes are of identical construction, 

whereas the s- and n-axes change orientation depending upon the local wind direction. 

Vertical Coordinate Systems 

Most generally, a vertical coordinate depicts what we know to be “up” and “down.” Vertical 

coordinates enable us to represent the atmosphere by a series of distinct levels, each of which is 

characterized as having the same value of some quantity that defines the vertical coordinate. In the 

atmospheric sciences, there exist four widely-used vertical coordinates: height (or z), pressure (or 

p), potential temperature (or θ), and sigma (or σ). 
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Since it is derived based upon height above sea level, the height (or z) coordinate is the most 

straightforward to both visualize and conceptualize. Here, we divide the atmosphere into a series 

of distinct levels each having the same height above sea level at every horizontal location. In this 

coordinate, the positive axis (known as the z-axis) points upward. The x-y-z coordinate system is 

commonly referred to as the Cartesian coordinate system. Constant height surfaces at low altitudes 

above sea level often intersect the Earth’s surface, particularly in mountainous regions. 

The pressure, or p, vertical coordinate is typically referred to as the isobaric vertical coordinate. 

Here, the prefix iso- implies “equal,” while the suffix –baric has the pressure unit of measurement 

bar at its heart. Thus, on an isobaric surface, pressure is constant at every horizontal location. A 

given isobaric surface is generally not found at the same height above sea level at every horizontal 

location, however, because of the relationship between pressure and mass. Recall that pressure is 

related to the mass of the air present within the atmosphere above a given point. Consequently, 

pressure is highest at the Earth’s surface, where it has an average sea level value of approximately 

1013.25 hPa, and decreases going upward. Thus, in this coordinate, the positive p-axis points 

downward. Isobaric surfaces at relatively high pressures (≥850 hPa) can intersect Earth’s surface, 

particularly near higher terrain. Meteorological data collected above the Earth’s surface, including 

temperature, relative humidity, wind speed and direction, and geopotential height, are typically 

reported on isobaric surfaces. This makes the isobaric coordinate the most frequently used vertical 

coordinate in synoptic meteorology, particularly for map analysis. We will make frequent use of 

data plotted on isobaric surfaces such as 850, 700, 500, and 300 hPa during this semester. 

The potential temperature, or θ, vertical coordinate is typically referred to as the isentropic vertical 

coordinate. Here, the prefix is- implies “equal,” while the suffix –entropic refers to entropy, which 

is closely related to potential temperature. Thus, on an isentropic surface, potential temperature is 

constant at every horizontal location. As a result, a given isentropic surface is generally not found 

at the same height above sea level, or pressure, at every horizontal location. The isentropic vertical 

coordinate is appealing because many physical processes in the atmosphere conserve (i.e., keep 

constant) potential temperature as they occur, even if air moves vertically upward or downward 

with respect to height. We will consider isentropic analysis in more detail early next semester. 

The sigma coordinate is a terrain-following coordinate that is commonly used in numerical weather 

prediction models, primarily for computational reasons, but that is not traditionally used elsewhere. 

We will not utilize the sigma coordinate in this class. 

Reference Frames 

There exist three primary reference frames: Eulerian, quasi-Lagrangian, and Lagrangian. An 

Eulerian reference frame is a fixed reference frame. It is established over a fixed geographic area. 

Because it does not move, it also does not change shape. Air can move into and out of an Eulerian 

reference frame. Most conventional weather analyses use an Eulerian reference frame. 
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By contrast, a Lagrangian reference frame is a moving reference frame. It is not fixed in space, but 

rather moves with the flow, which consists of an infinitesimal set of air parcels. The simplest 

example of a Lagrangian reference frame is given by a single trajectory following the motion of 

an air parcel. Air does not move into or out of a Lagrangian reference frame; rather, the reference 

frame changes shape following the flow when following multiple air parcels. 

A quasi-Lagrangian reference frame combines elements of both Eulerian and Lagrangian reference 

frames. A quasi-Lagrangian reference frame is a moving reference frame but with a fixed shape. 

A simple example of a quasi-Lagrangian reference frame is a fixed box that follows the motion of 

some atmospheric feature such as an area of low pressure. Air can move into and out of a quasi-

Lagrangian reference frame, but the feature(s) being tracked cannot. 


