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Synoptic Meteorology I: Finite Differences 

For Further Reading 

College-level Calculus texts contain extensive information regarding the mathematical definition 

of limits, partial derivatives, and Taylor functions and series. Sections 1.2.2 and 1.2.3 of Mid-

Latitude Atmospheric Dynamics by J. Martin provide similar information from the perspective of 

their applications to the atmospheric sciences. 

Partial Derivatives (or, Why Do We Care About Finite Differences?) 

Apart from the ideal gas law, the equations that govern the evolution of fundamental atmospheric 

properties such as wind, pressure, and temperature (the primitive equations) contain many terms 

with partial derivatives. Indeed, many thermodynamic and kinematic properties of the atmosphere 

are typically expressed in terms of partial derivatives. We will explore many specific examples of 

such equations throughout both this and next semester.  

Mathematically speaking, the partial derivative of some generic field f with respect to some generic 

variable x can be expressed as: 
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. That begs the question: how do 

we compute 
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 from available atmospheric data?  

To do so, we use what are known as finite differences to approximate the value of ∆f over some 

finite ∆x. Applied to isoplethed analyses of meteorological fields or gridded data, finite differences 

enable us to compute any quantity that depends upon one or more partial derivatives. Here, we 

wish to describe how finite difference approximations are obtained, the degree to which each is an 

approximation, and use examples to introduce how they can be applied to the atmosphere. 

Developing Finite Difference Approximations 

First, let us consider a generic continuous function f(x), a graphical example of which is depicted 

below in Fig. 1. This function doesn’t necessarily represent a meteorological field, but it doesn’t 

not necessarily represent one either; it is simply a generic function. Along the curve given by f(x), 

there are three points of interest: xa, xa+1, and xa-1. The function f(x) has the values f(xa), f(xa+1), 
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and f(xa-1) at these three points, respectively. The distance between xa and xa-1 is equal to the 

distance between xa and xa+1, and we can denote this distance as ∆x. 

We derive finite difference approximations from Taylor series, or mathematical representations of 

functions as infinite sums of terms that are calculated from the values of the functions’ derivatives 

at any given point. The Taylor series expansion of f(x) about x = b, where b is some generic point, 

is given by: 

( ) ...
!3

)('''
)(

!2

)(''
))((')()(

32 +−+−+−+= bx
bf

bx
bf

bxbfbfxf  (2) 

This expansion states that f(x) is equal to the value of f(x) at x = b plus an infinite series of higher-

order terms, each of which contains an increasingly large partial derivative (primes; a single prime 

denotes the first partial derivative, two primes denote the second partial derivative, etc.), exponent 

on x – b, and factorial (!) order. 

 

Figure 1. Graphical depiction of a generic function f(x) evaluated at three points. Please see the 

text for further details. 

Let us consider two cases: one where x = xa+1 and b = xa and one where x = xa-1 and b = xa. In the 

first case, the distance x – b, or xa+1 – xa, is equal to ∆x; in the second case, the distance x – b, or 

xa-1 – xa, is equal to -∆x. Making use of this information, we can expand (2) for these two cases: 
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Note the similar appearance of (3) and (4) apart from the leading negative signs on the first and 

third order terms in (4). These arise because x – b = -∆x for this case, as noted above. 

From (3) and (4), we are interested in the value of f’(xa), or 
x

f




evaluated at xa. We can use (3) and 

(4) to obtain an expression for this term; we simply need to subtract (4) from (3). Doing so, we 

obtain the following: 
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Note how the zeroth and second order terms in (3) and (4) cancel out in this operation. If we 

rearrange (5) and solve for f’(xa), we obtain: 
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At this point, we wish to neglect all terms higher than the first-order term from (6). Doing so, we 

are left with: 
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Equation (7) is what is known as a centered finite difference. It provides a means of calculating 

x

f




 at x = xa by taking the value of f at x = xa+1, subtracting from it the value of f at x = xa-1, and 

dividing the result by the distance between the two points (2∆x). Note that x here and in later 

examples can be any variable; it does not have to represent the x-axis or the east-west direction. 

Equation (7) is equivalent if x is replaced by y, z, p, or any number of other variables. 

There exist other ways for us to use (3) and (4) to get expressions for f’(xa). For instance, we can 

solve (3) for this term. If we do so, we obtain: 
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Neglecting all terms higher than the first order term in (8), we obtain: 
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Equation (9) is what is known as a forward finite difference. It provides a means of calculating 
x
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at x = xa by taking the value of f at x = xa+1, subtracting from it the value of f at x = xa, and dividing 

the result by the distance between the two points (∆x). 

Alternatively, we can solve (4) for f’(xa). If we do so, we obtain: 
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Neglecting all terms higher than the first order term in (10), we obtain: 

x

xfxf
xf aa

a


−
= − )()(

)(' 1  (11) 

Equation (11) is what is known as a backward finite difference. It provides a means of calculating 

x

f




 at x = xa by taking the value of f at x = xa, subtracting from it the value of f at x = xa-1, and 

dividing the result by the distance between the two points (∆x). 

Finite Differences as Approximations 

We do not need to neglect the higher-order terms in obtaining any of the above expressions for 

f’(xa); we have done so here primarily for simplicity. If we were to retain the higher-order terms, 

we would obtain more accurate approximations for f’(xa). This highlights a key point: all finite 

differences are approximations. All finite differences are associated with what is known as 

truncation error, which is determined by the power of ∆x on the first term that is neglected in 

obtaining the finite difference approximation. 

For instance, consider our centered finite difference given by Equation (7). In obtaining (7), the 

first term that we neglected in (6) included a (∆x)2 term. As a result, we say this finite difference 

is “second-order–accurate.” In contrast, consider our forward and backward finite differences, 

given by Equations (9) and (11), respectively. In obtaining each equation, the first terms that we 

neglected in (8) and (10) included a (∆x) term. As a result, we say that these finite differences are 

“first-order–accurate.” The higher the order of accuracy, the more accurate the finite difference. 

In synoptic meteorology, where exact values for partial derivatives are often not necessary, we 

typically utilize the centered finite difference. Forward and backward finite differences are rarely 

utilized except along the edges of the data, where the -1 and +1 points may not exist. Higher-order 

finite differences, typically fourth- or higher-order–accurate, are necessary for numerical weather 
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prediction models given chaos theory, which states that very small differences in data can lead to 

very large forecast differences. 

Finally, note that our finite difference approximations inherently approximate the partial derivative 

over a finite distance Δx. As a result, we must take care to limit the horizontal distance over which 

we calculate finite differences when approximating partial derivatives in synoptic calculations. 

A Finite Difference Approximation for Second Derivatives 

While the first partial derivative of some field provides a measure of its slope, sometimes we are 

interested in evaluating the second partial derivative of some field. Recall from calculus that the 

second partial derivative of a field provides a measure of its concavity; positive second partial 

derivatives infer that a field is concave up (or convex), while negative second partial derivatives 

infer that a field is concave down. Applied to meteorology, a field that is convex represents a local 

minimum, whereas a field that is concave down represents a local maximum; i.e., the second partial 

derivative has the opposite sign of the field itself. 

We can obtain a finite difference approximation for the second partial derivative by adding (3) and 

(4). Doing so, we obtain: 
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If we solve (12) for f’’(xa) and truncate the higher-order terms, we obtain: 
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Equation (13) provides a fourth-order–accurate means of evaluating 
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, or )('' axf , by adding 

the value of f at xa+1 to the value of f  at xa-1, subtracting two times the value of f at xa, and dividing 

the result by the square of the distance between points (∆x)2.  

We can use (13) to prove the second partial derivative’s mathematical definition. For example, let 

us consider a hypothetical example where the 2-m temperature is 78°F in Madison and Waukesha 

and 82°F in Johnson Creek. These cities are approximately evenly spaced from each other between 

Madison in the west and Waukesha in the east. Let Madison be the a-1 location, Johnson Creek be 

the a location, and Waukesha be the a+1 location. (13) indicates that we should first add Madison’s 

and Waukesha’s temperatures together, giving us 156°F. From this, we subtract double Johnson 

Creek’s temperature, or 164°F. Consequently, the numerator is positive. Since the denominator is 

inherently positive, (13) would be negative in this case. This implies a concave down field, which 

we previously stated represents a local maximum – just as we see in the given temperatures!  



Finite Difference Approximations, Page 6 

 

Just as for the finite difference approximation for the first partial derivative, (13) is equivalent if x 

is replaced by y, z, p, or any number of other variables. Likewise, just as for the finite difference 

approximate for the first partial derivative, higher-order accurate finite difference approximations 

for the second partial derivative can also be obtained. 

A Refresher on Vector Notation 

As partial derivatives are found in nearly all aspects of synoptic meteorology, it is useful to close 

by reminding ourselves of some of their basic properties, particularly as it relates to vectors.  

For instance, horizontal temperature advection can be written as: 
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The first representation is written in what is known as component notation, whereas the second is 

in what is known as vector notation (here, assuming that the gradient operator applies only in the 

horizontal direction). The two are equivalent to each other because of the definitions of the gradient 

operator and dot product, i.e., 
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where we have again considered only the horizontal directions in this analysis. For the dot product, 

a is simply u v− = − −v i j  and b is simply 
T T
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There are other quantities that can be written in component or vector notation that we will consider 

in more detail later in the semester. For example, consider the divergence of the horizontal wind: 

u v
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This is a relatively straightforward application of the gradient operator and dot product, the proof 

of which is left to the student. We can also consider the vertical component of the vorticity of the 

horizontal wind: 
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This involves application of the gradient operator, dot product, and cross-product, where the cross-

product of two vectors is given by: 
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For this cross-product, a is simply   and b is simply u v− = − −v i j . Thus, 

( ) ( )

0 0
0

00
0

0 0 0 0

y x yx
x y

uv u v
u v

v u

x y

  
 

   = = − +
 

  
= − − − + − 

  

i j k

v i j k

i j k

 

Taking the dot product of this result with k retains only the k-component of the vector, giving us 

the vorticity as defined in (16). 

Together, the gradient operator, dot product, and cross-product – and, specifically, the divergence, 

advection, and vorticity applications thereof – represent the most commonly used vector properties 

in synoptic meteorology. We will introduce others as warranted later in this and next semesters. 

Finally, we will often consider total derivatives, or terms like 
( )D

Dt
. In their component forms, in 

Cartesian coordinates and excluding the vertical dimension, the total derivative is given by: 
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The first right-hand–side term represents the local change in the variable, whereas the remaining 

right-hand-side terms are equal to the negative of the advection of the variable. In some cases, the 

total derivative in an equation is written in component form, with the local change term remaining 

on one side of the equality and the advection terms being moved to the other side (acquiring their 

leading negative sign in so doing). Together, the total derivative is meteorologically interpreted as 

the change in the variable following the motion (i.e., tracking along with the air and not fixed to a 

specific location, and thus intrinsically representing a Lagrangian reference frame). 


