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Synoptic Meteorology I: Hydrostatic Balance, the Hypsometric Equation, and Thickness 

For Further Reading 

Section 1.4 of Midlatitude Synoptic Meteorology by G. Lackmann derives the hypsometric 

equation and introduces thickness and its applications. Section 3.1 of Mid-Latitude Atmospheric 

Dynamics by J. Martin provides a basic derivation of the hydrostatic equation and a full derivation 

of the hypsometric equation. Section 6-1 of Weather Analysis by D. Djurić provides an in-depth 

discussion of how thickness may be used to identify fronts. Most other dynamic meteorology texts 

also include derivations and discussions of the hydrostatic and hypsometric equations. 

Derivation of the Hydrostatic Equation 

Consider a unit volume (V = 1 m3, with sides of 1 m each) of air in the troposphere that is at rest. 

Assume that the horizontal properties of the air within the volume are uniform. In the absence of 

friction and the vertical component of the Coriolis force, there are two forces acting in the vertical 

on this unit volume of air: one related to pressure and one related to the weight of the air volume 

(or, more specifically, to gravity). 

Recall that: 

pAF =  (1) 

VggmW ==  (2) 

In (1) and (2), F = force (N), p = pressure (Pa), A = area (m2), W = weight (kg m s-2 = N), g = 9.81 

m s-2 (the gravitational constant), V = volume (m3), and ρ = density (kg m-3). The unit N refers to 

a Newton, equivalent to 1 kg m s-2. Consequently, weight W is equivalent to a force. 

Consider the forces acting on our air volume (Fig. 1). There are two forces acting in the downward 

direction: weight, or the force associated with gravity (gρA∆z, noting that V = AΔz by definition), 

and the pressure force acting upon the top of the air volume (p(z+∆z)A). There is a single force 

acting in the upward direction: the pressure force acting upon the bottom of the air volume (p(z)A). 

For both pressure forces, the quantities in parentheses denote the altitudes at which the pressure is 

valid, not multiplication operators. 

In the atmosphere, for an atmosphere at rest (but also frequently also when the atmosphere is not 

at rest) the upward and downward forces are said to balance or cancel each other out. We can write 

this mathematically as: 

0)()( =−+− zAgAzzpAzp   (3) 
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Figure 1. Graphical depiction of the forces acting in the vertical direction upon a unit volume of 

air. In the above, p(z) refers to the pressure at an altitude Z = z while p(z+∆z) refers to the pressure 

at an altitude Z = z + ∆z. In this example, volume V is written as the product of the area A and the 

height of the air volume ∆z. 

Note that the upward-directed force is prefaced with a positive sign and that the downward-directed 

forces are prefaced with negative signs. The idea of balance means that the addition of these forces 

must be equal to zero, such that the right-hand side of (3) is simply 0. 

Next, divide (3) by A∆z and group the pressure force terms to obtain: 

g
z

zzpzp
=



+− )()(
 (4) 

Multiplying by -1, we obtain: 

g
z

zpzzp
−=



−+ )()(
 (5) 

If we take the limit of (5) as ∆z approaches 0, we obtain: 

g
z

zpzzp
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−=



−+

→

)()(
lim

0
 (6) 

The left-hand side of (6) is equivalent to the partial derivative of p with respect to z, such that: 
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Equation (7) is the hydrostatic equation. It provides a formulaic representation of what is known 

as hydrostatic balance, describing the balance between the downward-directed gravitational force 

and the upward-directed pressure gradient force. Recall that the pressure gradient force is always 

directed from higher pressure toward lower pressure. Since pressure is a function of the mass of 

air that is above you, pressure is highest at ground level and decreases upward from there. Thus, 

the vertical component of the pressure gradient force is always directed upward. 

Newton’s Second Law of Motion states that the net force that is imposed on an object is equal to 

its mass times its acceleration. Stated differently, an object’s acceleration is equal to the net force 

imposed upon the object divided by the object’s mass. Under the constraint of hydrostatic balance, 

where the net force in the vertical direction is zero, air does not accelerate upward or downward. 

In practice, we find that hydrostatic balance holds when vertical motion is small or weak. This is 

often true on the synoptic scale but not in thunderstorms, which is beyond the scope of this class. 

An alternative derivation of the hydrostatic equation can be obtained by performing a scale analysis 

of the vertical momentum equation for synoptic-scale motions. This derivation has the advantage 

of quantitively justifying neglecting friction and the vertical component of the Coriolis force in the 

derivation; however, it does not start from basic physical principles as does the derivation here. 

Derivation of the Hypsometric Equation 

Recall that the ideal gas law applicable when the air contains a non-zero amount of water vapor 

can be expressed as: 

vdTRp =  (8) 

In (8), p = pressure (Pa), ρ = density (kg m-3), Rd = dry air gas constant (287.04 J kg-1 K-1), and Tv 

= virtual temperature (K). The virtual temperature can be approximated by ( )wTTv 61.01+= , 

where w = mixing ratio of water vapor (kg kg-1). For common values of w of < 0.02 kg kg-1 within 

the lower troposphere, Tv is equal to or slightly larger than T. 

If we solve (8) for ρ and substitute into the hydrostatic equation (7), we obtain: 

vdTR

pg

z

p
−=




 (9) 

Multiplying both sides of (9) by ∂z and dividing both sides of (9) by p, we obtain: 
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If we solve (10) for ∂z and make the substitution of ∂(ln p) for ∂p/p, we obtain: 

( ) zp
g

TR vd =− ln  (11) 

If we integrate (11) between pressure levels p1 and p2, where p1 > p2, at which the heights are z1 

and z2, where z1 < z2, we obtain: 

( )  =
2

1

1

2

ln

z

z

p

p

vd zp
g

TR
 (12) 

Note that we have changed the order of the integration on the left-hand side (p2 to p1), which 

permits us to drop the leading negative sign.  

On the left-hand side of (12), we have two constants with respect to p: Rd and g. However, Tv is 

not constant with respect to p – in fact, it is very much not constant with respect to p! To simplify 

the integration, we approximate Tv by a layer-mean value vT  that is constant with respect to p. If 

we make this approximation and then integrate both sides of (12), we obtain: 

( ) ( )( ) 1221 lnln zzpp
g

TR vd −=−  (13) 

If we combine the natural logarithms in (13) into a single term, we obtain: 

12

2

1ln zz
p

p

g

TR vd −=







 (14) 

Equation (14) is the hypsometric equation. Because p1 > p2, the natural logarithm on the left-hand 

side of (14) is positive-definite (i.e., is always positive). The constants Rd and g are also positive-

definite. This enables us to simply (14) to the following proportionality: 

12 zzTv −  (15) 

This means that the difference in height z2 – z1 between two pressure surfaces p1 and p2, which we 

refer to as thickness (z2 – z1 = ∆z), is directly proportional to the mean virtual temperature between 

the two pressure surfaces p1 and p2. This is a powerful statement, one that has many applications 

to understanding the Earth’s atmosphere as well as synoptic-scale meteorological phenomena! We 

next consider several applications of this relationship. 
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Meteorological Applications of the Hypsometric Equation 

The Height of Tropospheric Isobaric Surfaces  

If we take z1 = zsurface = 0 m, such that p1 = psurface, then (15) tells us that the height z2 of some 

isobaric surface p2 within the troposphere is higher when the layer-mean virtual temperature is 

higher. Conversely, the height z2 of the isobaric surface p2 is lower when the layer-mean virtual 

temperature is lower. Consider, for example, the 500 hPa isobaric surface. The height of the 500 

hPa isobaric surface is higher where the layer-mean temperature is higher and lower where the 

layer-mean temperature is lower. When the layer-mean temperature rapidly changes in the zonal 

and/or meridional directions, so too does the height of the 500 hPa isobaric surface. 

Let’s apply this concept. Due to the annually averaged incoming solar radiation imbalance between 

the poles and Equator, air temperature at and above the surface is typically coldest at the poles and 

increases as you move toward the Equator. Thus, on planetary scales, we expect the height of the 

500 hPa isobaric surface to be highest at the Equator and lowest at the poles. This is why the 500-

hPa height (or the height of any tropospheric isobaric surface, for that matter) is typically highest 

in the tropics and lowest at polar latitudes. 

We can also apply this concept on the synoptic scale. Two hypothetical rawinsonde observations 

indicate that the 1000-hPa height is 100 m at both Green Bay, WI and Jacksonville, FL. The 1000-

500 hPa vT observed by these rawinsondes is 286 K at Jacksonville and 270 K at Green Bay. From 

these data, we can use the hypsometric equation to compute the 500 hPa height at each location: 

Jacksonville, FL:  
𝑅𝑑(286 𝐾)

𝑔
𝑙𝑛 (

1000 ℎ𝑃𝑎

500 ℎ𝑃𝑎
) = 𝑧2 − 100 𝑚, such that z2 = 5900.49 m 

Green Bay, WI:  
𝑅𝑑(270 𝐾)

𝑔
𝑙𝑛 (

1000 ℎ𝑃𝑎

500 ℎ𝑃𝑎
) = 𝑧2 − 100 𝑚, such that z2 = 5575.99 m 

Thus, the 1000-500 hPa thickness is lower at the colder Green Bay than the warmer Jacksonville. 

A relatively small layer-mean virtual temperature difference of 16 K results in a 324.5 m 500-hPa 

height difference between the two locations! 

Precipitation Type Analysis and Forecasting 

Rawinsonde observations measure the heights of isobaric surfaces above the ground, data that can 

be used to analyze the thickness between any two isobaric surfaces, such as 1000 hPa and 500 hPa 

or 1000 hPa and 850 hPa. Data obtained from numerical weather prediction models can be used to 

do the same for forecast data. Because the thickness between two isobaric surfaces is directly 

proportional to the mean virtual temperature in the vertical layer between the two isobaric surfaces, 

precipitation type may be crudely diagnosed from analyses and forecasts of thickness. 
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A commonly-used rule of thumb states that when the thickness of the 1000–500 hPa layer is less 

than 5400 m, snow rather than rain is the most likely precipitation type. We can use (14) to “prove” 

this rule of thumb. Plugging in 1000 hPa for p1, 500 hPa for p2, 5400 m for z2 – z1, and the known 

values for Rd and g, we obtain vT  = 266.25 K (-6.9°C). Because T ≤ Tv, the layer-mean temperature 

between 1000–500 hPa is ≤ -6.9°C. We thus might reasonably expect that it is cold enough in this 

layer to support snow reaching the surface (assuming that precipitation is possible or occurring). 

Note, however, that precipitation type is crucially dependent upon the vertical temperature profile 

between cloud base and the ground, such that a full diagnosis of precipitation type requires analysis 

of observed or forecast skew T-ln p diagrams. 

 

 

The Vertical Structure of Cyclones and Anticyclones 

Thickness is a powerful tool by which the vertical structure of both cyclones and anticyclones may 

be understood. Let us consider two examples… 

a) “An area of low pressure at the surface found within a warm air column disappears quickly 

with height.” 

Earlier, we stated that the thickness of the layer between two isobaric surfaces is directly 

proportional to the mean virtual temperature within that layer. Here, we have a warm air column, 

and thus we would expect the thickness within this column to be large compared to locations 

outside of this column. This means that, within the warm air column, isobaric surfaces at the 

bottom of the layer will be depressed downward toward the ground compared to locations outside 

of the warm air column. Isobaric surfaces at the top of the layer within the warm air column will 

be elevated upward compared to locations outside of the warm air column. 

Consequently, at and near the surface, the pressure within the warm air column will be lower than 

outside of the warm air column. However, as you move upward, the pressure within the warm air 

column becomes larger than outside of the warm air column (Fig. 2). Real-world examples of areas 

of low pressure at the surface found within columns of warm air include tropical cyclones and heat 

lows. The relative warmth found at the core of these features, coupled with their reduced intensity 

with increasing height, give rise to the term warm-core cyclones to describe these features. 
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Figure 2. Schematic meant to accompany example (a) above. The red lines denote representative 

isotherms, where T1 > T2 > T3 > T4, such that the warmest temperatures are found in the center of 

the figure. Four isobaric surfaces, 700 hPa (orange), 800 hPa (blue), 900 hPa (green), and 1000 

hPa (black), are given by solid lines. Note the greater vertical spacing between the isobaric surfaces 

within the warm air column as compared to outside the warm air column. Thus, an area of locally 

lower pressure at and near the surface weakens and disappears with increasing altitude. 

b) “An area of low pressure at the surface found within a cold air column increases in intensity 

with height.” 

This is the opposite of what we described in the previous example, with an area of low pressure 

now located in a cold-air column. We expect the thickness of a layer between two isobaric surfaces 

within this column to be lower than between the same two isobaric surfaces outside of this column. 

Consequently, the low pressure becomes stronger with increasing altitude (Fig. 3).  

 

Real-world examples of areas of low pressure at the surface found within cold air columns include 

mid-latitude cyclones, or those associated with fronts, that we will study extensively this semester 

and next. The relatively coolness found at the heart of these features, coupled with their increasing 

intensity with increasing height, give rise to the term cold-core cyclones to describe these features. 
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Figure 3. Schematic meant to accompany example (b) above. The red lines denote representative 

isotherms, where T1 > T2 > T3 > T4, such that the coldest temperatures are found in the center of 

the figure. Four isobaric surfaces, 700 hPa (orange), 800 hPa (blue), 900 hPa (green), and 1000 

hPa (black), are given by solid lines. Note the smaller vertical spacing between the isobaric 

surfaces within the cold air column as compared to outside the cold air column. Thus, an area of 

locally lower pressure at and near the surface becomes more intense with increasing altitude 


