[1]:

[2]:

[3]:

Week4-ThicknessExample

August 25, 2022

Synoptic Meteorology I: Thickness Example

In our lecture notes, we stated and graphically demonstrated that an area of low pressure at the sur-
face found within a warm air column disappears quickly with height. However, the demonstration
relied on a hypothetical example and not actual meteorological data. This Jupyter Notebook uses
meteorological data from a WRF-ARW simulation of Hurricane Matthew (2016) to demonstrate
this principle for a real-world event.

Data Acquisition and Plot Generation

We start by importing the needed modules. These are drawn from four packages - netCDF4,
matplotlib, numpy, and wrf (short for wrf-python). We do not need to load cartopy because there
is no mapping involved.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.cm import get_cmap

from matplotlib.ticker import (NullFormatter, ScalarFormatter)
from netCDF4 import Dataset

from wrf import to_np, getvar, CoordPair, vertcross

Open the desired WRF-ARW model output file, which in this instance contains data for only a
single output time. This is stored in our JupyterHub’s community shared_ notebooks folder:

ncfile = Dataset("/srv/data/shared_notebooks/DataWrangling/wrf-python/
—wrfout_d01_2016-10-08_00:00:00")

Extract the 3-D model pressure, wind speed, and virtual temperature. The first is in hPa by
default; the middle is specified in kt; the last is specified in K. All are wrf-python derived variables.

The uvmet_ wspd__dir function returns both speed and direction relative to the Earth. The wind
speed is the Oth element of the first dimension and the wind direction is the 1th element of the first
dimension. The second dimension is the 3-D data, which we obtain all of.

p = getvar(ncfile, "pressure")
wspd = getvar(ncfile, "uvmet_wspd_wdir", units="kt") [0, :]
tv = getvar(ncfile, "tv", units="K")

As we did with our hypothetical example in the lecture notes, we will use a vertical
cross-section across the simulated Hurricane Matthew to assess our statement. We start
by using the wrf-python CoordPair helper function to define the vertical cross-section’s

[4]:

[5]:

[6]:

[7]:

start and end points. We could theoretically use metpy’s vertical cross-section functional-
ity (https://unidata.github.io/MetPy/latest/examples/cross_section.html), but we stick to wrf-
python’s functionality to avoid having to load another package and mix syntax. The points speci-
fied here were determined manually after looking at other simulation output for Hurricane Matthew
at this time.

start_point = CoordPair(lat=32.5, lon=-84.0)
end_point = CoordPair(lat=28.0, lon=-78.5)

Next, we interpolate our model data to the vertical cross-section using wrf-python’s vertcross
function. The two commands are nearly identical except for the latlon keyword argument. In the
first example, this is set to True so that the lat/lon points along the cross-section axis will be stored
with wspd_ cross. In the second example, this is set to False so that these points are not stored
with theta_ cross. Since the cross-section axes are identical, we only need the one set of lat/lon
points.

wspd_cross = vertcross(wspd, p, wrfin=ncfile, start_point=start_point,
end_point=end_point, latlon=True, meta=True)

tv_cross = vertcross(tv, p, wrfin=ncfile, start_point=start_point,
end_point=end_point, latlon=False, meta=True)

We next compute the average virtual temperature at each vertical level along the cross-section’s
axis, then subtract it from the virtual temperature along the cross-section’s axis. The latter gives
us the anomalous virtual temperature, which illustrates locations at which the virtual temperature
is relatively high or low.

The tv_cross data is an xarray DataArray, so we can use the DataArray .mean() function to
compute the average. The tv_cross DataArray has two dimensions (which we can obtain by
printing it out), vertical and cross_line_idx. It is the latter along which we compute the average.

tv_cross_mean = tv_cross.mean(dim='cross_line_idx')
tv_cross_anom tv_cross-tv_cross_mean

The remainder of the plot-generation code is contained in a single code block below. This is due
to a Python quirk; a figure is generated before we add any data to it if we try to break the code
up into separate code blocks. Please see the comment blocks below to interpret the code.

Create the figure instance (12" wide by 6" tall,

200 dots per inch), then establish the figure's azes.
fig = plt.figure(figsize=(12,6), dpi=200.)

ax = plt.axes()

We use contourf to plot the cross—section data, which

are stored in the wspd_cross wvariable defined at the

end of the previous code block. In addition to the data,

this wvariable has two coordinate dimensions of relevance:
zy_loc, which contains the lat/lon points along the cross-
section, and vertical, which contains the vertical levels
for the wvertical cross-section.

The z-azis ©s a 2-D location. When plotting, however, we

can only pass in one dimension. We handle this by passing

in a 1-D array of walues from O -> N, where N is the number
of locations along our wvertical cross—section. We later loop
over the location coordinates to get lat/lon information for
labeling the z—-axis.

The y-azis is pressure. We can get this from wspd_cross's
vertical coordinate.

All fields are converted from their default zarray fields

to numpy arrays for ease of plotting. The numpy arrays do
not have descriptive metadata and thus are well-suited for
basic plotting operations such as those here.

We specify shading levels from 15 (inclusive) to 80
(exclusive) by 5 kt.

We specify that the plot should use the wviridis colormap.
More info on colormaps:
https://matplotlib.org/stable/tutorials/colors/colormaps.html
coord_pairs = to_np(wspd_cross.coords["xy_loc"])

wspd_contours = ax.contourf (np.arange(coord_pairs.

—shape[0]) ,to_np(wspd_cross["vertical"]),

FHOWH W R R R OR W W OH R R R R ERHR

to_np(wspd_cross) ,np.arange(15.,80.,5.),,
—.cmap=get_cmap("viridis"))

Add a colorbar.
plt.colorbar(wspd_contours, ax=ax)

Add black contours for virtual temperature anomaly. As with wind
speed, we pass a 1-D array from O -> N for the z-dimension,
then pass in the vertical levels for the y—-dimension. We
specify wvertical levels from -5 K (inclusive) to +5 K
(inclusive) by 1 K. Not specifying a line type defaults to
solid lines for positive values and dashed lines for negative wvalues.
tv_contours = ax.contour(np.arange(coord_pairs.
—shape[0]) ,to_np(tv_cross_anom["vertical"]),
to_np(tv_cross_anom) ,np.arange(-5.,5.01,1.
—0),colors="'black')
plt.clabel(tv_contours, inline=1, fontsize=12, fmt="7i")

Thts set of code structures our z-axzts ticks and their labels.
It relies on the coord_pairs set of z/y, lat/lon coordinate
tnformation defined a few lines above. First, we create an
array from O -> N to generically define the azis tick marks.
Next, we loop over the coord_pairs wvariable to extract out

the lat/lon information (using its latlon_str helper function,
defined in wrf-python's CoordPairs module). These positions,
which wtll end up being our tick labels, are stored to z_labels.
Finally, we set the tick mark locations and tick labels,

HOWH OB R R R W W™ R

where ::5 for each indicates all walues from start to end
(the :: part) by 5. You may need to tweak this depending on
how long of a cross—section you have. Note that the tick
labels are rotated slightly for display purposes.
x_ticks = np.arange(coord_pairs.shape[0])
x_labels = [pair.latlon_str(fmt="{:.2f}, {:.2f}")

for pair in to_np(coord_pairs)]
ax.set_xticks(x_ticks[::5])
ax.set_xticklabels(x_labels[::5], rotation=45, fontsize=10)

This set of code structures our y-axtis ticks and their labels.

We first set the y-azis to be logarithmic rather than linear.

Next, we set how the logarithmic azis labels should be structured,
using scalars rather than powers of 10. Unce we have

done that, we define ten y-azis ticks from 100 to 1000 hPa.

Finally, we set the y—axis limits - in this case, 1000-100 hPa.
ax.set_yscale('symlog')
ax.yaxis.set_major_formatter(ScalarFormatter())
ax.set_yticks(np.linspace(100, 1000, 10))

ax.set_ylim(1000, 100)

Set the z-azis and y-azis labels
ax.set_xlabel("Latitude/Longitude", fontsize=12)
ax.set_ylabel ("Pressure (hPa)", fontsize=12)

Title the plot and then display it. Note the \n

operate to split the title over two lines.

plt.title("Wind Speed (kt, shaded) and Virtual Temperature Anomaly from the
—Cross-Section Mean (K, contours) \n Valid Time: 0000 UTC 8 October 2016")

plt.show()

Wind Speed (kt, shaded) and Virtual Temperature Anomaly from the Cross-Section Mean (K, contours)

Valid Time: 0000 UTC 8 October 2016
100 75

200

300

400

Pressure (hPa)

500

600

700

800
900
1000

5 Ee B B o &
Latitude/Longitude

Interpretation

Hurricane Matthew is centered in the above cross-section. The near-surface wind speed exceeds 60
kt along Matthew’s northwest side, or to the left of the center along the cross-section, and exceeds
65 kt along Matthew’s southeast side, or to the right of the center along the cross-section. The wind
speed rapidly decays with increasing altitude or decreasing pressure on both sides, representing an
area of low pressure that weakens with increasing altitude.

Concurrently, the virtual temperature anomaly in the vertical column atop Hurricane Matthew
exceeds +3 K between 625-325 hPa and is positive throughout the troposphere. This indicates that
Hurricane Matthew is located within a column of warm air relative to its surroundings.

Altogether, we have an area of low pressure at the surface within a column of warm air. Consistent
with thickness principles, this area of low pressure rapidly decays with increasing altitude, thus
providing a real-world example to support what the math and hypothetical example tells us.

