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Synoptic Meteorology I: Thermal Wind Balance 

For Further Reading 

Sections 1.4.1 and 1.4.2 of Midlatitude Synoptic Meteorology by G. Lackmann derives the thermal 

wind relationship and relates the thermal wind to the mean temperature advection in a given 

vertical layer. Section 4.3 of Mid-Latitude Atmospheric Dynamics by J. Martin provides a 

derivation and discussion of thermal wind balance and is the primary source for the applications 

of thermal wind balance discussed herein. 

Deriving the Thermal Wind Relationship 

Recall that the geostrophic relationship applicable on isobaric surfaces is given by: 
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If we substitute vg for v and ug for u and divide both sides of (1) by f, we obtain: 
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The thermal wind is defined as the vector difference in the geostrophic wind between two pressure 

levels p1 and p0, where p0 is closer to the surface (and thus p0 > p1). It is not an actual wind, but it 

is a useful construct that allows us to link the geostrophic wind (a kinematic field) to temperature 

(a mass field). 

To obtain an expression for the thermal wind, we take the partial derivative of (2) with respect to 

p (∂/∂p; i.e., a change in the geostrophic wind with height, consistent with how the thermal wind 

is defined) to obtain: 
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If we commute the order of the partial derivatives on the right-hand sides of (3), then both 

equations contain a common ∂Φ/∂p term. The hydrostatic equation states that: 
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If we plug in to the hydrostatic equation with the definition of the geopotential Φ (∂Φ = g ∂z) and 

the ideal gas law (ρ = p/RdTv), we obtain the following expression: 
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Substituting this into (3), we obtain: 
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We can simplify (4) by taking Rd out of the derivatives as a constant. Furthermore, because we are 

using the form of the geostrophic wind applicable on isobaric surfaces, p is constant with respect 

to both x and y. We can thus extract p and put it into ∂p, where by definition, ∂p/p = ∂(ln p) and 

thus p/∂p = 1/∂(ln p). Doing so, we obtain: 
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(5) gives us expressions for the vertical shear of the geostrophic wind. This is pretty close to how 

the thermal wind is defined, as a shear also represents a change, but it’s not quite in the right form. 

To get to this form, let’s multiply both sides of (5) by ∂ (ln p) and integrate from p0 to p1: 
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We note that Rd and f are both constant with respect to p and can thus be pulled out of the integrals. 

Likewise, if we substitute 
vT for Tv, where 

vT  is the layer-mean virtual temperature, then derivative 

terms with respect to 
vT  can be pulled out of the integrals. This is similar to what we did to obtain 

the hypsometric equation.  
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Doing so, (6) becomes: 
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(7) defines the thermal wind. It states that the change in geostrophic wind between two isobaric 

levels p1 and p0 is directly related to the horizontal layer-mean (between p1 and p0) virtual 

temperature gradient. As the layer-mean virtual temperature is directly proportional to thickness, 

we can thus state that the thermal wind is directly related to the horizontal thickness gradient. 

Inspecting (7), we see that the meridional component of the thermal wind is a function of the zonal 

gradient in the layer-mean virtual temperature. Likewise, the zonal component of the thermal wind 

is a function of the meridional gradient in the layer-mean virtual temperature. Compare this to (2): 

the meridional component of the geostrophic wind is a function of the zonal geopotential height 

gradient, whereas the zonal component of the geostrophic wind is a function of the meridional 

geopotential height gradient.  

In vector form, (7) can be expressed as: 
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where the subscript of p on the gradient operator indicates it is computed on an isobaric surface. 

The cross-product in (8) means that the thermal wind is perpendicular to the thickness contours! 

We can demonstrate this by applying the right-hand rule to isoplethed meteorological data. First, 

point your index finger upward (the 𝒌̂ direction). Next, point your middle finger from low toward 

high thickness along the horizontal thickness gradient. The resulting direction in which your thumb 

is pointing represents the direction in which the thermal wind is blowing towards. 

Indeed, whereas the geostrophic wind blows parallel to the isobars or isohypses, the thermal wind 

“blows” parallel to lines of constant thickness! Equivalently, we can state that the thermal wind 

“blows” parallel to the isotherms of layer-mean virtual temperature. Thus, if we know the thermal 

wind, we know how the isotherms and lines of constant thickness are spatially oriented. 

The analogy to geostrophic balance can be taken one step further. Just as the Buys-Ballot law states 

that low pressure is to your left (in the Northern Hemisphere) when the geostrophic wind is at your 

back, (8) indicates that low thickness is to your left (in the Northern Hemisphere) when the thermal 

wind is at your back. We can also demonstrate this using the component form in (7). Consider a 

thermal wind directed from west to east (uT > 0). On the right-hand side of (7b), Rd, f, and ln(p0/p1) 
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are all positive. As a result, vT

y




 must be negative, meaning that 

vT  is colder along the positive y-

axis (or to the north). This is 90° to the left of an observer facing downstream (here, to the east) of 

the thermal wind. 

Application to Horizontal Temperature Advection 

If we know the geostrophic wind at two pressure levels, we can determine the thermal wind over 

the vertical layer between those two levels using vector subtraction. Given the thermal wind, we 

know how the isotherms are oriented horizontally, as described above. From this information, we 

can analyze how the geostrophic wind at each pressure level blows with respect to the isotherms 

to qualitatively assess the mean horizontal temperature advection within the vertical layer. These 

principles are illustrated graphically below in Fig. 1. 

   

Figure 1. (left) A thermal wind vT that is associated with cold air advection. (right) A thermal wind 

vT that is associated with warm air advection. For simplicity, layer-mean temperature is depicted 

in place of layer-mean virtual temperature; the qualitative interpretation is unchanged between the 

two quantities, and the quantitative interpretation is only minimally affected. Note how the thermal 

wind is of identical direction and magnitude between the panels but that the sign of the horizontal 

temperature advection is different. This is due to how the geostrophic wind within the layer defined 

by the thermal wind is oriented with respect to the isotherms of layer-mean temperature. 

In the left-most panel of Fig. 1, the geostrophic wind 0gv at p0 (the lower level) is from the 

northwest. The geostrophic wind 1gv at p1 (the upper level) is from the west-northwest. The 

geostrophic wind is turning counterclockwise with increasing distance above the ground, which 

we refer to as backing winds.  

At this point, it is helpful to recall basic tenets of vector addition and subtraction. Two vectors A


 

and B


can be added together by placing the beginning of B


at the end of A


and drawing a vector 
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from the beginning of A
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 to the end of B

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We now return to our examples in Fig. 1. The vector difference 01 gg vv − , defining the thermal 

wind, is obtained by placing the two vectors at a common origin, then drawing a vector from the 

end of 0gv  to the end of 1gv . By definition, the layer-mean isotherms are parallel to this vector 

with warm air found to the right (here, the south). Because the geostrophic wind at both p0 and p1 

blows from cold toward warm air, backing of the geostrophic wind with increasing distance above 

the ground is associated with cold air advection. 

Similarly, in the right-most panel of Fig. 1, the geostrophic wind 0gv at p0 is from the southeast. 

The geostrophic wind 1gv at p1 is from the south-southeast. The geostrophic wind is turning 

clockwise with increasing distance above the ground, which we refer to as veering winds. The 

vector difference between the two is again obtained by placing the two vectors at a common origin 

and drawing a vector from the end of 0gv  to the end of 1gv . By definition, the layer-mean 

isotherms are parallel to this vector with warm air found to the right (again, the south). Since the 

geostrophic wind at both p0 and p1 blows from warm toward cold air, veering of the geostrophic 

wind with increasing distance above the ground is associated with warm air advection. 

A great way to put these principles into practice is to regularly look at skew-T/ln p charts from one 

or more location(s). If you approximate the geostrophic wind by the total wind, how it changes 

with height will give you an approximate idea of whether cold or warm air advection is ongoing 

within a given layer at a given location without needing other data. This principle is demonstrated 

in the accompanying “Thermal Wind Application” notes. 

There is an important caveat to keep in mind when applying these principles: the thermal wind is 

based upon geostrophic balance, which does not hold near the ground (because of friction) and in 

strongly curved flows (with features where acceleration is important; i.e., hurricanes or tornadoes). 

The extent to which the flow departs from geostrophic balance depends on the extent to which the 

flow is curved (more curvature = greater departure) or affected by friction (closer to the ground or 

over a rougher surface = greater departure). In these situations, insights from the thermal wind are 

at best only qualitatively accurate and (rarely) are at worst altogether incorrect. A simple way of 

estimating the impact is to use a series of isohypse analyses on the isobaric levels in question to 

qualitatively estimate the geostrophic wind direction (if not also speed) and compare the resulting 

insight to that obtained using the full wind (as is often done in practice). 

Further Insights from the Thermal Wind 
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Under the constraint of thermal wind balance, as manifest by (7) and (8), the following are true: 

• Where there is a change in geostrophic wind (speed and/or direction) with height, there 

must be a horizontal gradient in layer-mean temperature. 

• Where there is a horizontal gradient in layer-mean temperature, there must be a change in 

geostrophic wind (speed and/or direction) with height. 

The term vertical wind shear is commonly used to refer to changes in wind speed and/or direction 

with height. Recall from our discussion of (5) that the thermal wind can be viewed as the vertical 

wind shear of the geostrophic wind. Because of (7), thermal wind balance can also be viewed as 

the balance between vertical wind shear and horizontal gradients of layer-mean virtual temperature 

or thickness. In general, if one were to analyze synoptic-scale observations, one would find that 

this balance holds quite frequently in the midlatitudes. 

We can also apply thermal-wind–related concepts to understanding Earth’s general circulation, 

particularly in the midlatitudes. Consider that, in an annual average, latitudes closer to the Equator 

receive more insolation than do latitudes closer to the poles. As a result, again in an annual average, 

it is warmer throughout the troposphere closer to the Equator – say, at 30°N – than it is closer to 

the poles – say, at 60°N. This means that there exists a horizontal layer-mean temperature gradient. 

From the hypsometric equation, it also means that the thickness between two isobaric surfaces 

located near the surface (e.g., 1000 hPa) and the tropopause (e.g., 200 hPa) is greater near the 

Equator than near the poles. This is graphically depicted in Fig. 2. 

 

Figure 2. Annually averaged vertical cross-section between 30°N and 60°N of three selected 

isobaric surfaces (200, 600, and 1000 hPa; black lines) and the relative layer-mean temperature 

between the 1000 hPa and 200 hPa isobaric surfaces at 30°N (WARM) and 60°N (COLD). 
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The north-south gradient in thickness – i.e., layer-mean virtual temperature, or to an approximation 

layer-mean temperature – means that the thermal wind for this layer is directed from west to east, 

such that warm air is found 90° to the right of an observer with the thermal wind at their back. This 

defines the vector difference in the geostrophic wind within the layer being considered. Note that 

a non-zero thermal wind defines what is known as a baroclinic atmosphere.  

We can go a step further, however. Recall that geostrophic balance is defined as the balance 

between the horizontal pressure gradient force and the Coriolis force. In Fig. 2, the horizontal 

(here, north-south) pressure gradient is larger at higher altitudes than it is closer to the surface. 

This implies that the horizontal pressure gradient force is greater at higher altitudes, thus requiring 

a greater Coriolis force to maintain geostrophic balance. Because the magnitude of the Coriolis 

force is directly proportional to the horizontal wind speed, this implies a faster horizontal wind 

speed at higher altitudes than closer to the surface.  

Furthermore, the horizontal pressure gradient is directed from north to south at all altitudes, such 

that the horizontal pressure gradient force is directed from south to north. The Coriolis force, under 

the constraint of geostrophic balance, is thus directed from north to south. Because we know that 

the Coriolis force is directed 90° to the right of the wind, we know that the geostrophic wind is 

directed from west to east at all altitudes. Because the horizontal wind speed – or magnitude of the 

geostrophic wind vector – is larger at higher altitudes, this implies westerly geostrophic winds that 

increase with increasing distance above ground. This is a defining characteristic of the midlatitudes 

and is frequently observed on the synoptic- to planetary-scales. 


