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Synoptic Meteorology II: The Quasi-Geostrophic Omega Equation 

Readings: Sections 2.3 and 2.5 of Midlatitude Synoptic Meteorology. 

 

Why are we interested in vertical motion? 

Before we derive and discuss the quasi-geostrophic omega equation, it is prudent to ask: why are 

we interested in vertical motion? Firstly, recall our discussion of the quasi-geostrophic vorticity 

equation. The ∂ω/∂p term contained within that equation is responsible for the amplification and/or 

deamplification of middle tropospheric troughs and ridges. As a result, in the quasi-geostrophic 

system, if we want to know something about how the amplitude of the midlatitude trough/ridge 

pattern is evolving, we need to know how the vertical velocity varies with respect to pressure. 

Secondly, recall that mixing ratio is conserved for dry-adiabatic ascent. Thus, ascent over a deep 

enough vertical layer or prolonged period brings about condensation. This is substantially aided if 

the layer in which the ascent occurs is relatively moist prior to the ascent beginning. Naturally, the 

overlap of ascent and moisture implies cloud and precipitation formation. Thus, we are interested 

in vertical motion because, even though synoptic-scale vertical motion is typically small in 

magnitude, it plays a role in the formation and evolution of clouds and precipitation. 

 

Obtaining the Quasi-Geostrophic Omega Equation 

Recall that the quasi-geostrophic vorticity equation is given by the following:  
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Likewise, recall that the quasi-geostrophic thermodynamic equation is given by the following: 
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The quasi-geostrophic vorticity (1) and thermodynamic (2) equations are two equations containing 

two unknowns – vertical motion ω and geopotential height Φ. Other variables such as geostrophic 

relative vorticity ζg and potential temperature θ that appear in (1) and (2) can be diagnosed using 

the geopotential height field and thus are not independent unknown variables. 

To obtain the quasi-geostrophic omega equation, we wish to combine (1) and (2) to eliminate Φ, 

leaving a single equation for ω that describes the vertical motion on a given isobaric surface. 
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To do so, we need to obtain ∂/∂p of (1). Doing so, and commuting the derivatives on the left-hand 

side of the resultant equation, we obtain: 
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Likewise, we need to obtain 2 of (2). Doing so, and slightly re-writing the first term on the right-

hand side of the resultant equation, we obtain: 
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If we add (3) and (4) and bring the terms involving ω to the left-hand side of the resultant equation, 

we obtain the quasi-geostrophic omega equation: 
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(5) is a partial differential equation describing the vertical motion ω on an isobaric surface. There 

are four forcing terms on the right-hand side of (5). From left to right, these represent differential 

geostrophic-vorticity advection, the Laplacian of potential-temperature advection, differential 

friction, and the Laplacian of diabatic heating.  

As with the quasi-geostrophic height tendency equation, this equation is typically applied in the 

middle troposphere and not at the surface. When combined with (1), however, (5) can be used to 

examine the evolution of synoptic-scale weather features – including surface pressure systems. We 

will tackle this in a future lecture. 

The left-hand side of (5) expresses ω in terms of the Laplacian ( 2 ) as well as a second derivative 

with respect to pressure. Because the second partial derivative of a local maximum is negative and 

that of a local minimum is positive, the left-hand side of (5) can be approximated as: 
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As before, the   symbol means “is proportional to,” such that the left-hand side of (6) is 

proportional to –ω. Therefore, where the right-hand side of (5) is positive, ω is negative. Because 

of the sign convention on ω, this implies local ascent. Likewise, where the right-hand side of (5) 

is negative, ω is positive, implying local descent. 
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Basic Interpretation of the Quasi-Geostrophic Omega Equation 

Differential Geostrophic-Vorticity Advection 

The contribution to vertical motion exclusively due to differential geostrophic-vorticity advection 

can be expressed by: 
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To interpret (7), we consider the cases where (a) cyclonic geostrophic-vorticity advection increases 

upward (i.e., positive advection becoming more positive upward) and (b) anticyclonic geostrophic-

vorticity advection increases upward (i.e., negative advection becoming more negative upward). 

In case (a), the numerator on the right-hand side of (7) is positive. The denominator, the change in 

pressure, is negative – as it always is, because pressure decreases upward. Therefore, ω is negative, 

which implies middle tropospheric ascent. In case (b), the numerator on the right-hand side of (7) 

is negative. The denominator here is also negative. Therefore, ω is positive, which implies middle 

tropospheric descent. 

Note the f0 preceding the partial derivative in (7). This suggests that the magnitude of this forcing 

term increases with latitude. However, we typically neglect this relationship for simplicity. 

 

Laplacian of Potential-Temperature Advection 

The contribution to vertical motion exclusively due to the Laplacian of potential-temperature 

advection can be expressed by: 
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The right-hand side of (8) includes a Laplacian operator, which is difficult to readily interpret. To 

simplify, we make use of a generalized form of the relationship posed by (6), such that: 

( ) −− gh v
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 (9) 

 

The definition of h, which is positive-definite, is provided in the quasi-geostrophic height tendency 

equation lecture notes. We typically neglect its influence for simplicity and instead focus on the 

geostrophic potential-temperature advection term in the parentheses. Given the leading negative, 

warm (positive) geostrophic potential-temperature advection on a given isobaric surface results in 

ω < 0 (or ascent) and cold (negative) geostrophic potential-temperature advection on a given 

isobaric surface results in ω > 0 (or descent). 
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One interesting digression before proceeding: a hallmark of a baroclinic atmosphere is the presence 

of horizontal temperature (or potential-temperature) gradients. The baroclinicity can be viewed as 

a measure of the strength of those gradients, or how rapidly the temperature changes over a given 

distance. Because of the proportionality in (9), we can state that the magnitude of ω is proportional 

to the magnitude of the baroclinicity in the synoptic-scale environment. 

 

Differential Friction 

The contribution to vertical motion exclusively due to differential friction can be expressed by: 
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In (10), K represents the effects of friction and is positive-definite. K is non-zero only within the 

boundary layer (i.e., close to the surface), where the frictional effects of the land-surface can be 

meaningfully communicated to the troposphere. 

The right-hand side of (10) contains a partial derivative with respect to pressure. However, because 

K is non-zero only in the boundary layer, Kζg is zero in the middle to upper troposphere. Thus, the 

sign of the right-hand side of (10) depends entirely on the sign of the geostrophic relative-vorticity 

ζg in the lower troposphere. 

For the case of lower-tropospheric cyclonic geostrophic relative-vorticity (ζg > 0), the numerator 

on the right-hand side of (10) is negative. The denominator, the change of pressure, is negative. 

Per the leading negative on the right-hand side of (10), this implies ω < 0, or ascent. This is what 

is known as Ekman pumping. 

For lower-tropospheric anticyclonic geostrophic relative vorticity (ζg < 0), the numerator on the 

right-hand side of (10) is positive. The denominator, the change of pressure, is negative. Per the 

leading negative on the right-hand side of (10), this implies ω > 0, or descent. This is what is 

known as Ekman suction. 

As with the differential geostrophic-vorticity advection term, there is an f0 preceding the partial 

derivative in (7). Thus, the magnitude of this forcing term increases with latitude, but we typically 

also neglect this relationship for simplicity. 

 

 

Laplacian of Diabatic Heating 
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The contribution to vertical motion exclusively due to the Laplacian of diabatic heating can be 

expressed by: 
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dQ/dt is the diabatic heating rate. Diabatic warming refers to the situation where dQ/dt > 0, while 

diabatic cooling refers to the situation where dQ/dt < 0. This term is non-zero only in the presence 

of diabatic heating, such as from radiation and latent heat release. On the synoptic-scale, where 

motions are primarily adiabatic in nature and the atmosphere is unsaturated, this term can often be 

neglected. 

As with the Laplacian of potential temperature advection, the right-hand side of (11) includes a 

Laplacian operator that is difficult to readily interpret. To simplify, we assume that the Laplacian 

of a quantity is proportional to the negative of that quantity, such that: 
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Thus, the presence of diabatic warming leads to ω < 0, implying ascent. The presence of diabatic 

cooling leads to ω > 0, implying descent. 

Note that (12) indicates that ω is inversely proportional to pressure, such that the forcing magnitude 

is greater at higher altitudes (i.e., lower pressures). As with the similar relationships for other terms 

in the quasi-geostrophic height tendency and omega equations, we often neglect this relationship 

for simplicity. 

 

The Physical Reasoning Behind the Quasi-Geostrophic Omega Equation’s Forcing Terms 

In the preceding section, we focused on a basic explanation of the signs of the forcings that result 

in ascent and descent. However, this explanation is meaningless unless we know why, physically, 

these forcings result in ascent and descent. 

Let us start with the differential geostrophic-vorticity advection term. We start with equation (19) 

from our “Quasi-Geostrophic Vorticity Equation” lecture: 
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This equation describes changes in geostrophic relative-vorticity following the geostrophic flow. 

Neglect the β right-hand side term and use the continuity equation to rewrite the remaining right-

hand side term to obtain: 
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Let us consider an air parcel approaching the base of a trough (i.e., it is moving through the trough) 

from the west, in a region of anticyclonic geostrophic-vorticity advection. The air parcel must 

increase its geostrophic relative vorticity as it approaches the base of the trough, such that the left-

hand side of (13) must be positive. From (13), this means that there must be convergence within 

the region of anticyclonic geostrophic-vorticity advection. 

Now, let us consider an air parcel moving away from the base of a trough toward the east (i.e., also 

moving through the trough), in a region of cyclonic geostrophic-vorticity advection. The air parcel 

must decrease its geostrophic relative vorticity as it departs the base of the trough, such that the 

left-hand side of (13) must be negative. From (13), this means that there must be divergence within 

the region of cyclonic geostrophic-vorticity advection. 

However, the quasi-geostrophic omega equation is concerned with how the geostrophic-vorticity 

advection changes (in sign and/or magnitude) as a function of pressure. Consider two cases: 

• Low-level cyclonic vorticity advection and upper-level anticyclonic vorticity advection, or 

anticyclonic geostrophic-vorticity advection increasing with height. The above discussion 

implies low-level divergence and upper-level convergence, such that vertically integrating 

divergence results in mid-level descent. 

• Low-level anticyclonic vorticity advection and upper-level cyclonic vorticity advection, or 

cyclonic geostrophic-vorticity advection increasing with height. The above discussion 

implies low-level convergence and upper-level divergence, such that vertically integrating 

divergence results in mid-level ascent. 

Both interpretations are consistent with our basic insight derived above. Note, however, an implicit 

middle-tropospheric evaluation of the omega equation (i.e., close to the level of non-divergence). 

Indeed, the omega equation is typically evaluated in the middle troposphere using low- and upper-

level forcings (e.g., ω at 500 hPa using forcings from 700 hPa and 300 hPa).  

Next, consider the potential-temperature advection term. Air parcels conserve (maintain their value 

of) potential temperature following the motion for (dry) adiabatic motions; i.e., no diabatic heating. 

For warm potential-temperature advection on an isobaric surface, air must flow from warm to cold 

air. With potential temperature increasing upward, the higher-valued isentropes must ascend over 

their lower-valued counterparts associated with the cold air mass. Thus, air parcels constrained to 

a higher-valued isentropic surface must ascend over the cold air mass that they approach under the 
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condition of warm potential-temperature advection. Conversely, air parcels constrained to a lower-

valued isentropic surface must descend as they approach a warmer air mass under the condition of 

cold potential-temperature advection. 

Next, consider the differential friction term. As discussed last semester, friction causes air parcels 

to flow inward (i.e., converge) toward surface cyclones (ζg > 0). Given a lower boundary condition 

of zero divergence, upward integration from the surface results in net friction-induced convergence 

with surface cyclones. From the continuity equation, this leads to lower-tropospheric ascent. This 

is consistent with our basic interpretation above. Conversely, friction causes air parcels to flow out 

(i.e., diverge) from surface anticyclones (ζg < 0). Given a lower boundary condition of zero 

divergence, upward integration from the surface results in net friction-induced divergence with 

surface anticyclones. From the continuity equation, this leads to lower-tropospheric descent, again 

consistent with our basic interpretation above. 

Finally, consider the diabatic heating term. In this case, diabatic heating is primarily a diagnostic 

proxy for existing vertical motions, consistent with the quasi-geostrophic omega equation being a 

diagnostic equation (as discussed later in this lecture). Since we evaluate mid-tropospheric vertical 

motions with the quasi-geostrophic omega equation, diabatic warming is generally associated with 

latent heat release due to condensation, freezing, or deposition, each of which generally occur with 

ascent. Conversely, diabatic cooling is generally associated with latent cooling due to evaporation, 

melting, or sublimation, each of which generally occur with and/or force descent. 

 

The Quasi-Geostrophic Omega Equation and Geostrophic Balance  

Preliminary Considerations 

For convenience, let us restate the quasi-geostrophic omega equation:  
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If diabatic heating is absent or can be estimated somehow, the right-hand side of (14) includes only 

geostrophic quantities. Obviously, the geostrophic wind vg and the geostrophic relative vorticity ζg 

are geostrophic quantities. However, with Poisson’s relationship, the hydrostatic equation, and the 

definition of geostrophic relative vorticity in terms of the geopotential, the potential temperature θ 

can also be viewed as a geostrophic quantity. 

As a result, synoptic-scale vertical motions – weak as they may be – are forced entirely by the 

geostrophic flow. Let us consider this thought in the context of the continuity equation, however: 
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The continuity equation states that the vertical motion is intricately tied to the divergent component 

of the ageostrophic wind. Because the geostrophic flow exclusively forces vertical motions, (15) 

implies that it also forces the divergent component of the ageostrophic wind. As the ageostrophic 

wind inherently implies a departure from geostrophic balance, this means that the geostrophic flow 

is responsible for bringing departures from geostrophic balance! 

The ageostrophic circulation – that comprised of the ageostrophic wind and vertical motion – acts 

to restore the geostrophic (and hydrostatic) balance that the geostrophic wind itself destroyed. In 

the quasi-geostrophic system, this can be understood with the quasi-geostrophic vorticity equation 

in the form given by (13). In the following, we demonstrate these concepts in the context of each 

of the forcing terms to the quasi-geostrophic omega equation.  

 

Application to the Quasi-Geostrophic Omega Equation 

Differential Geostrophic-Vorticity Advection 

Consider the case of cyclonic geostrophic-vorticity advection increasing upward, associated with 

ascent per earlier discussion. The continuity equation, given by (15), relates the partial derivative 

of the vertical motion ω with respect to pressure to the divergence of the ageostrophic flow.  

In this discussion, assume that the ascent is maximized in the middle troposphere, where we have 

applied the quasi-geostrophic omega equation, and decays to zero at the rigid boundaries of the 

surface and tropopause. Thus, ∂ω/∂p in the lower troposphere is positive and ∂ω/∂p in the upper 

troposphere is negative. From (15), we know that the former is associated with convergence and 

the latter with divergence. 

Next, consider the quasi-geostrophic vorticity equation. In the lower troposphere, where ∂ω/∂p is 

positive, ζg must increase following the flow. This implies that middle-tropospheric ascent forces 

increasing geostrophic relative vorticity in the lower troposphere! In the upper troposphere, where 

∂ω/∂p is negative, ζg must decrease following the flow. This implies that middle-tropospheric 

ascent forces decreasing geostrophic relative vorticity in the upper troposphere! Thus, ascent 

counteracts the initial situation of cyclonic geostrophic-vorticity advection increasing upward that 

forced the vertical motion in the first place! 

Similar arguments can be made to understand what happens for anticyclonic geostrophic-vorticity 

advection increasing upward. The geostrophic flow forces synoptic-scale descent; the ageostrophic 

circulation associated with such descent, however, counteracts the initial situation of anticyclonic 

geostrophic-vorticity advection increasing with height. 
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Potential-Temperature Advection 

Consider the case of warm potential-temperature advection and thus ascent on the isobaric level 

on which the quasi-geostrophic omega equation is applied. Recall that because pressure is constant 

on an isobaric surface, warm potential temperature advection implies warm temperature advection.  

In the absence of diabatic processes, dry-adiabatic ascent results in cooling (of temperature, though 

not potential temperature, which is conserved). This can be viewed in the context of ascent along 

a dry adiabat on a skew-T. As a result, ascent counteracts the initial situation of warm (potential) 

temperature advection that forced the vertical motion in the first place! Similar arguments can be 

made to describe the response to cold potential-temperature advection. 

Differential Friction 

Let us consider the case where there is cyclonic geostrophic relative-vorticity and thus ascent near 

the surface. As above, this results in ∂ω/∂p > 0 in the lower troposphere and ∂ω/∂p < 0 in the upper 

troposphere. This leads to ζg increasing following the flow in the lower troposphere and decreasing 

following the flow in the upper troposphere. Thus, ascent counteracts the initial situation of 

friction dissipating cyclonic geostrophic relative vorticity in the lower troposphere that forced the 

vertical motion in the first place! Similar arguments can be made for the case where friction acts 

on anticyclonic geostrophic relative-vorticity within the boundary layer. 

Diabatic Heating 

Finally, consider the case of diabatic warming (dQ/dt > 0). The physical interpretation is identical 

to that for warm potential-temperature advection above. Ascent-driven adiabatic cooling resulting 

from diabatic warming counteracts the warming. Similar arguments can be made in the inverse for 

diabatic cooling. 

 

The Quasi-Geostrophic Omega Equation Applied to the Four-Quadrant Jet Model 

One can invoke the quasi-geostrophic omega equation to interpret vertical motions associated with 

the four-quadrant jet model. Considering only the differential geostrophic absolute-vorticity 

advection term, the quasi-geostrophic omega equation can be approximated by: 
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Making this approximation implies that the other terms of the quasi-geostrophic omega equation 

are negligible (i.e., no potential-temperature advection, friction, or diabatic heating). 
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An upper-tropospheric trough, with a maximum of cyclonic geostrophic absolute vorticity in its 

base, is typically found poleward of a westerly jet streak. An upper-tropospheric ridge, with a 

maximum of anticyclonic geostrophic absolute vorticity in its apex, is typically found poleward of 

a westerly jet streak. This configuration results in upper-tropospheric cyclonic vorticity advection 

in the left-exit and right-entrance regions of the jet streak and upper-tropospheric anticyclonic 

vorticity advection in the right-exit and left-entrance regions of the jet streak. If vorticity advection 

is small near the surface, this indicates that there should be middle-tropospheric ascent in the right-

entrance and left-exit regions of the jet streak and middle-tropospheric descent in the left-entrance 

and right-exit regions of the jet streak. 

 

 

Figure 1. Schematic illustrations of an upper-tropospheric jet associated with (a) no potential-

temperature advection, (b) cold potential-temperature advection, and (c) warm potential-

temperature advection. In each panel, isentropes are given by the dashed lines and isohypses are 

given by thick solid lines. Labels of “Up” and “Down” indicate middle-tropospheric ascent and 

descent, respectively. From Lang and Martin (2012, Quart. J. Roy. Meteor. Soc.), their Fig. 3. 

 

If we consider only the potential-temperature advection forcing term, the quasi-geostrophic omega 

equation can be approximated by: 

( ) −− gh v


 (17) 
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Making this approximation implies that the other terms of the quasi-geostrophic omega equation 

are negligible (i.e., no differential geostrophic relative vorticity advection, friction, or diabatic 

heating). 

Consider two cases: (1) isentropes (or, equivalently on an isobaric surface, isotherms) are oriented 

such that there is cold advection through the jet streak and (2) isentropes are oriented such that 

there is warm advection through the jet streak. These are depicted in Figs. 1(b,c), respectively. For 

reference, the case with no potential temperature advection through the jet streak is depicted below 

in Fig. 1(a). 

As stated before, cold potential-temperature advection on an isobaric surface implies sinking 

motion across that isobaric surface. Thus, the first case is associated with quasi-geostrophic forcing 

for descent. This forcing is maximized in the jet core, where the wind component perpendicular to 

the isentropes or isotherms is maximized (and, thus, cold advection is maximized). Conversely, 

warm potential-temperature advection on an isobaric surface implies rising motion across that 

isobaric surface. Thus, our second case is associated with quasi-geostrophic forcing for ascent. 

This forcing is again maximized in the jet core, where the wind component perpendicular to the 

isentropes or isotherms is maximized (and, thus, warm advection is maximized). 

Thus, there are two contributors to vertical motions we must consider: (1) parcel accelerations 

contributing to ageostrophic flow and vertical motion and (2) potential temperature advection by 

the geostrophic wind contributing to ageostrophic flow and vertical motion. In our first case, the 

combined effects of these two contributors result in descent aligned with the jet core; in the second 

case, the combined effects of these two contributors result in ascent aligned with the jet core. The 

interpretation of the four-quadrant jet model is otherwise similar to that which we have considered 

before, as can be inferred from a comparison of Figs. 1(b,c) to Fig. 1(a). 

 

Evaluating the Quasi-Geostrophic Omega Equation 

The quasi-geostrophic omega equation contains no partial derivatives with respect to time. As a 

result, this equation cannot be used to make a forecast! Instead, it may only be used to diagnose 

vertical motions (on the synoptic-scale under the constraints of the quasi-geostrophic system) at a 

given time. 

Like the quasi-geostrophic height tendency equation, the vertical motion ω on the left-hand side 

of (5) depends upon the second derivatives of ω with respect to x and y (as manifest through the 

Laplacian operator) and p. In other words, the local value of the vertical motion depends upon its 

value at adjacent locations in both the horizontal and vertical. Thus, to solve this system requires 



The Quasi-Geostrophic Omega Equation, Page 12 

 

an iterative approach. Also as before, it is difficult to accurately compute the frictional and diabatic 

heating forcing terms that make up part of the right-hand side of (5). 

However, the differential geostrophic-vorticity advection and Laplacian of potential-temperature 

advection terms may be computed or estimated readily from any available source of atmospheric 

data, such as a numerical model analysis or forecast. This, along with the general proportionality 

from (6), enables us to diagnose synoptic-scale, mid-tropospheric vertical motions. Computational 

approaches are preferable over estimation approaches as the two primary forcing terms can – and 

often do! – oppose one another in sign, making their relative magnitudes important. 


