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Model Formulation and Resolved versus Unresolved Scales 

Learning Outcomes 

Following this lecture, students will be able to: 

• Demonstrate that the WRF-ARW model predictive equations are transformed versions of 

the primitive equations. 

• Apply Reynolds averaging to separate resolved from unresolved/sub-grid-scale processes 

in the primitive equations. 

 

The Equations 

Modern NWP models solve the primitive equations describing atmospheric motions as well as 

the conservation of mass, energy, and water vapor. Written in Cartesian coordinates with z 

(height) as the vertical coordinate, the primitive equations are expressed as: 
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In the above, note that v is the three-dimensional velocity vector. 

Equations (1) through (3) are the momentum equations, themselves being an application of 

Newton’s second law of motion. The left-hand side terms are local time-rate-of-change terms. 

The terms on the right-hand side of these equations include advection terms, curvature terms 

(those involving a, the radius of the Earth), pressure gradient terms (those involving p), Coriolis 

terms (those involving  ), frictional terms (the Fr terms), and gravity (those involving g). 

Equation (4) is a statement of the conservation of energy (e.g., energy is not created or 

destroyed), manifest as the thermodynamic equation. The left-hand side of this equation is the 
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local time-rate-of-change of temperature, while terms on the right-hand side represent horizontal 

advection, vertical advection (for 
z

T




−= ), adiabatic cooling/warming (involving d ), and 

diabatic heating (where dH/dt is the diabatic heating rate). 

Equation (5) is a statement of the conservation of mass, manifest as the continuity equation; e.g., 

mass is not created or destroyed. The left-hand side of this equation is the local time-rate-of-

change of density, defined as mass per unit volume. On the right-hand side of this equation are 

advection and divergence terms.  

Equation (5) can also be written in flux form using the following relationship: 

( ) ( )vvv  −=−−  

The left-hand side of this relationship includes an advection term and a divergence term, whereas 

the right-hand side of this relationship includes a flux-divergence term. Such a term represents 

the flux, or transport, of a quantity into or out of a given volume or area. We will revisit this 

distinction in the context of the WRF-ARW model governing equations shortly. 

Equation (6) is a statement of the conservation of water vapor. The left-hand side of this equation 

is the local time-rate-of-change of the water vapor mixing ratio. On the right-hand side of this 

equation is an advection term and a source/sink term Qv that includes conversions between 

microphysical species (e.g., rain, cloud water, cloud ice, snow, graupel, and hail). 

Full-physics models contain many additional equations akin to (6), with one for each 

microphysical variable that is treated prognostically by the chosen microphysical 

parameterization used by the model. For example, a model using the WSM6 microphysical 

parameterization, which predicts mixing ratio for water vapor qv, rain qr, cloud water qc, cloud 

ice qi, snow qs, and graupel/hail qg, will have six such equations. A model using the WDM6 

microphysical parameterization, which also predicts number concentration for rain Nr, cloud 

water Nc, and cloud condensation nuclei NCCN, will have nine such equations. 

The source and sink term in (6), or its counterpart for other microphysical variables, includes 

both grid-resolved and sub-grid processes. As we will see later this semester, there are many 

processes that must be accounted for by such terms, making equations such as (6) far more 

complex than they would otherwise seem. 

Equation (7) is the ideal-gas law. 

In the form presented in (1) – (7), we have seven equations with seven unknowns: u, v, w, T, p, ρ, 

and qv. We have prognostic (or predictive) equations for six of these unknowns, with pressure 

obtained from the diagnostic ideal-gas law. Thus, with appropriate numerical methods and some 

means of representing Frx,y,z, dH/dt, and Qv (plus other microphysical source/sink terms), we 

could solve the primitive equations so as to obtain a forecast valid at some future time. 
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The Equations Manifest in the WRF-ARW Model 

Let us now contrast these equations with their manifestation in the WRF-ARW model 

(Skamarock et al. 2021, Section 2.2). First, however, a few notes and definitions. 

The WRF-ARW model uses a terrain-following vertical coordinate η that is defined primarily as 

a function of dry hydrostatic pressure (i.e., the pressure of dry air under hydrostatic balance): 
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In the above, pdh is the dry hydrostatic pressure, pdht is the dry hydrostatic pressure at the top of 

the model (generally a user-defined parameter), pdhs is the dry hydrostatic pressure at the surface, 

p0 is a reference sea-level pressure, and B(η) defines the relative weighting between a purely 

isobaric vertical coordinate and a terrain-following vertical coordinate. At locations where pdhs ~ 

p0 (where the surface is near sea-level), the vertical coordinate reduces to the first right-hand side 

term in the equation above. In all cases, η is 0 at the top of the model (where pdh = pdht and B(η) = 

0) and 1 at the surface (where pdh = pdhs and B(η) = 1). 

The general form of the coordinate transformation between the height and terrain-following 

vertical coordinates is given by: 
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Subscripts on the gradient operator denote the vertical coordinate surface on which it is applied. 

For example, converting the x-direction pressure gradient term in (1) into the terrain-following 

vertical coordinate takes the following form: 
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Note that the vertical coordinate transformation for advection terms also incorporates the 

transformation of the vertical velocity from w (for constant-height surfaces; change in height 

with time) to its analogous formulation (change in vertical-coordinate location with time) in the 

chosen vertical coordinate.  

The WRF-ARW model is coupled to the dry-air mass field. This means that all variables are 

multiplied by the hydrostatic dry-air mass per unit area in the column. As pressure is a measure 
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of the air’s mass, this hydrostatic dry-air mass can be defined as the change in pressure between 

two vertical levels; i.e., 
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In coupled form, the three-dimensional velocity vector, moist potential temperature, and all 

mixing ratios take the form: 

vV d=  m d m  =   qQ d=  

The continuity equation for WRF-ARW is written in terms of the hydrostatic dry-air mass, as 

given by equation (2.12) of Skamarock et al. (2021): 
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Formally, WRF-ARW conserves hydrostatic dry-air mass (rather than total mass), such that this 

continuity equation is formally the hydrostatic dry-air mass conservation equation. Equation (E) 

is equivalent to (5), except that it is written in terms of μd (hydrostatic dry-air mass) rather than ρ 

(mass per unit volume), in flux form rather than advective form, and with all terms on the left-

hand side of the equation to clearly express the conservative nature of the equation. Here, the 

local rate of change of hydrostatic dry-air mass is equal to the flux convergence of hydrostatic 

dry-air mass. Note that (E) can equivalently be written using the coupled velocity vector: 
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We next consider the u-momentum equation, given by equation (2.8) of Skamarock et al. (2021): 
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In (A), the first term is the local time-rate-of-change term, the second term is the flux divergence 

term, the third and fourth terms are pressure gradient terms, and the forcing term on the right-

hand side of the equation includes Coriolis, curvature, and frictional terms. Φ = gz is the 

geopotential, α = ρ-1 is the inverse density, αd = ρd
-1 is the inverse dry air density, and α is related 

to αd by α = αd(1+q)-1, where q refers to the sum of all microphysical species’ mixing ratios. 

We do not consider the exact forms of the Coriolis and curvature terms at this time because they 

depend upon the chosen map projection, which we cover in more detail in an upcoming lecture. 

The most evident way in which (A) differs from (1) is that it is written in terms of the coupled 

form of u, U. Thus, to obtain (A), (1) was multiplied by the hydrostatic dry-air mass. Further, we 
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note that (A) contains a flux term whereas (1) contains an advection term. Recall the definition 

of the flux term, here written in terms of the relevant variables: 

( ) ( )uuu VVV −=−−  

Thus, it is natural to ask: where did the divergence term go? Consider equation (E.a). Solving 
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 term in this expansion. This term exactly balances that from the 

expansion of the flux divergence term. Thus, if we substitute the above two expansions into (A), 

we obtain: 
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In (A.a), as in (1), there is a local time-rate-of-change term and an advection term. The only 

difference in these terms between (A.a) and (1) is that the former is coupled to the hydrostatic 

dry-air mass. As a result, we state that (A) is equivalent to (1) for these terms. 

Note that the v-momentum, w-momentum, thermodynamic, and mixing ratio conservation 

equations all involve similar cancellation of a divergence term. We will discuss the forms of 

these equations shortly. 

Continuing with (A), note that (A) contains two pressure gradient terms whereas (1) contains 

only one such term. This arises because of the vertical coordinate transformation from the z 

coordinate to the η coordinate. To demonstrate this, we start with the form of the pressure 

gradient term in (1), applicable on constant height surfaces, after substituting α = ρ-1: 
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Next, substitute for ∂z with the definition of the geopotential, Φ, where ∂Φ = g∂z: 
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We continue to operate on this term using the hydrostatic equation applicable on the model 

vertical coordinate, which is given by equation (2.15) of Skamarock et al. (2021): 
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Equation (H) can be obtained from the hydrostatic equation applicable on constant height 

surfaces by transforming the vertical coordinate using the appropriate coordinate transform from 

page three, applying the definitions of the geopotential Φ and hydrostatic dry-air mass μd, and 

simplifying the resulting equation. 

If we rearrange (H) to solve for ∂Φ and plug the result from doing so into the 
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Finally, multiply this equation by μd to couple it to the hydrostatic dry-air mass to obtain: 
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Moving these terms from the right-hand side of (1) to the left-hand side gives us the pressure 

gradient terms as they appear in (A). Thus, we have demonstrated that (1) and (A) are 

functionally equivalent. 

The same principles apply to the v- and w-momentum equations, given by equations (2.9) and 

(2.10) of Skamarock et al. (2008): 
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Note that only one pressure gradient term appears in (C). This is because the vertical coordinate 
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transformation for ∂z only results in one term, whereas those for ∂x and ∂y result in two terms. 

Specifically, 
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In the above, we first transformed the vertical coordinate, then applied the definition of the 

geopotential to the result, then substituted from the hydrostatic equation (H). Multiplying this 

result by the hydrostatic dry-air mass μd and moving it to the left-hand side of the equation 

results in the pressure gradient term as it appears in (C). 

In WRF-ARW, the thermodynamic equation is written in terms of moist potential temperature 

Θm, 
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where qv (the water vapor mixing ratio) is dimensionless. For a typical maximum qv = 40 g kg-1 = 

0.04, θm = 1.0644θ; in other words, differences between θ and θm are generally small. As is θ, θm 

is a conserved quantity for dry adiabatic motions (i.e., conditions in which qv is constant 

following the flow). The resulting equation is given by equation (2.11) of Skamarock et al. 

(2021): 
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Note that Θm in the first and last terms of (D) is the coupled moist potential temperature, whereas 

θm in the second term of (D) is the uncoupled moist potential temperature. The first left-hand side 

term is the local time-rate-of-change for the coupled moist potential temperature whereas the 

second left-hand side term is the flux form of the horizontal and vertical advection terms for 

moist potential temperature. The right-hand side of (D) reflects diabatic processes. Thus, absent 

diabatic processes, (D) simplifies to the conservation statement for θm, as coupled to the 

hydrostatic dry-air mass. 

The conservation equation for the various microphysical species is nearly identical to (6) and is 

given by equation (2.14) of Skamarock et al. (2021): 
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In (F), Qm is the coupled mixing ratio and qm is the uncoupled mixing ratio. Here, m is taken to 

be one of the allowable microphysical species, and there is one equation like (F) for each. The 

right-hand side of (F) reflects the source/sink term for the given microphysical specie. 
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WRF-ARW also contains a prognostic equation for the geopotential, given by equation (2.13) of 

Skamarock et al. (2021). Unlike the other equations, this equation is written in advective form. 

This equation is obtained by simply taking the total derivative of the geopotential: 

gz= , such that 
Dt

Dz
g
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
 

The right-hand side of this equation is equal to gw, since Dz/Dt is defined as w. In terms of the 

coupled variables, this can be written as: 

W
g

d
 

The left-hand side of the definition of the geopotential can be expanded into local time rate of 

change and advection terms by using the definition of the total derivative: 
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Making this substitution, in terms of coupled fields, and moving the right-hand side above to the 

left-hand side, we obtain the prognostic equation for the geopotential: 
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Note that the geopotential is not a conserved quantity. 

The final equation is a diagnostic equation for p given by the ideal-gas law. We start with the 

ideal-gas law for dry air, such that R = Rd and ρ = α-1 = αd
-1. For now, we do not substitute for 

temperature with virtual temperature, such that we obtain: 
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Substituting this expression into the ideal-gas law, we obtain: 
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The left-hand side of this equation can equivalently be written as p
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If we substitute this into the ideal-gas law, we obtain: 
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If we then raise both sides of this expression to the power of γ, we obtain: 
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Using the properties of exponential functions, we can write: 
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To account for the effects of moisture upon pressure, we replace θ with θm. Earlier, we did not 

substitute a moisture-based temperature variable in the ideal-gas law when we substituted Rd for 

R. We now make that substitution, simply replacing θ with θm. This results in our final form of 

the ideal-gas law, given by equation (2.16) of Skamarock et al. (2021): 
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We thus have a closed set of nine equations, (A) through (I), with nine unknowns: U, V, W, Θ, 
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μd, Φ, Qm, αd, and p. The first seven of these unknowns are prognosed; αd is diagnosed from Φ 

and μd whereas p is diagnosed from Θ, Qv, αd, and μd. To first order, these are the equations 

solved by WRF-ARW to obtain a forecast. 
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Resolved versus Unresolved Scales 

Formally, these equations are valid for all scales of motion. However, because models can only 

resolve scales of motion above their grid spacings and must parameterize the scales of motion 

below their grid spacings, it is helpful to reformulate these equations to separate these scales. 

This is done by performing a scale separation on the equations.  

For any scalar dependent (or prognostic) variable, the variable can be represented as the sum of 

mean and perturbation terms, where mean refers to the resolved scales (e.g., grid-scale; average 

over a grid area/volume) and perturbation refers to the unresolved scales (e.g., sub-grid-scale): 

'xxx +=  

We now wish to perform this scale separation on the primitive equations. Let us do so in the 

context of how they appear in (1) through (7), though we note that the same scale separation can 

be applied to (A) through (I) as well. The course text illustrates this scale separation for the u-

momentum equation (1), so we will instead do so for the v-momentum equation (2). 

We start by expanding the frictional term, which can be written in terms of frictional stresses τ, 

representing viscous forces in the form of molecular diffusion that arise from molecular motions. 

Frictional stresses transfer quantities from high toward low values and thus act to homogenize a 

field. Representing the frictional term Fry in (2) in terms of these stresses, we obtain: 















+




+




=

zyx
Fr

zyyyxy

y





1
 

A given frictional stress τ_y represents friction that is exerted on the flow in the y-direction – the 

meridional wind v – by the fluid (or molecules) on one side of a constant _-plane as they flow 

along or across the fluid (or molecules) on the other side of a constant _-plane. This is depicted 

in Fig. 1 for τxy. 

These frictional stresses can be parameterized as a function of wind shear and a frictional (or 

dynamic viscosity) coefficient k, i.e., 

x

v
kxy



=   

y

v
kyy



=   

z

v
kzy



=  

Substituting, we obtain: 

v
k

z

v

y

v

x

vk
Fry

2

2

2

2

2

2

2

=











+




+




=


 

In the discussion that follows, however, we will utilize the formulation for Fry in terms of τ. We 

will discuss friction in greater detail when we cover planetary boundary layer, surface layer, and 

land-surface parameterizations. 
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Figure 1. Conceptual illustration of flow on opposite sides of a constant x plane (blue; flow 

vectors in red) comprising the frictional stress τxy. Frictional stresses relative to constant y and z 

planes are similarly construed, except with the constant plane rotated accordingly. 

 

Substituting the τ-based definition for Fry into (2), we obtain: 















+




+




+−




−−−−=





zyx
u

y

p

a

uw

a

u
v

t

v zyyyxy 






 1
sin2

1tan2

v  (a) 

 

The dependent variables in (a) are u, v, w, ρ, p, τxy, τyy, and τzy. If we decompose these into mean 

(grid-scale-resolved) and perturbation (sub-grid-scale) components, we obtain the following: 

( ) ( ) ( ) ( ) ( )( )
( )

( ) ( )

( )
( ) ( ) ( )

















+
+



+
+



+

+
+

+−


+

+
−

++
−

+
−++−=



+

zyx

uu
y

pp

a

wwuu

a

uu
vv

t

vv

zyzyyyyyxyxy '''

'

1

sin'2
'

'

1''tan'
''

'
2









vv

 

We assume that  '  (i.e., density perturbations are small relative to the grid-scale-resolved 

density). We also note that f = 2Ωsin . If we expand the above with this in mind, we obtain: 



Model Formulation and Resolved versus Unresolved Scales, Page 13 

 

( ) ( )


















+




+




+




+




+




+

−−



−




−

+++−++−




−




−




−




−




−




−




−




−




−




−




−




−=




+





zzyyxx

fuuf
y

p

y

p

wuwuwuwu
a

uuuuuu
a

z

v
w

z

v
w

z

v
w

z

v
w

y

v
v

y

v
v

y

v
v

y

v
v

x

v
u

x

v
u

x

v
u

x

v
u

t

v

t

v

zyzyyyyyxyxy '''1

'
'11

''''
1

'''2
tan

'
''

'

'
''

''
''

''








 (b) 

 

To make (b) applicable only on the grid-scales of motion and larger, we take what is known as 

the Reynolds average of the equation. This involves taking the mean of the entire equation. 

Note that this should not be confused with linearizing the equation, as is frequently done when 

studying wave solutions in dynamic meteorology. While in many ways similar, we want to retain 

the non-linearity inherent to the primitive equations.  

There are four Reynolds’ postulates that help us when taking Reynolds averages: 

• 0' =a  (the grid-scale mean of all sub-grid perturbations is zero) 

• aa =  (the mean of a mean is equivalent to the mean) 

• bababa ==  (similar to the previous postulate, except including a second variable) 

• 00'' === ababa  (because of the first postulate) 

Of these, the first and last postulates are the most important, as they result in many terms in (b) 

becoming zero when taking the Reynolds average. However, note that 0'' ba . Terms such as 

this are known as covariance terms and are only zero if the perturbation fields are not correlated 

(nominally, not physically correlated) with each other. In practice, we do not have advanced 

knowledge of whether these correlations are or should be zero, so we do not neglect them. 

Taking the Reynolds average of (b) and using the Reynolds postulates to simplify the result, we 

obtain: 
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( ) ( )


















+




+




+

−



−+−+−




−




−




−




−




−




−=





zyx

uf
y

p
wuwu

a
uuuu

a

z

v
w

z

v
w

y

v
v

y

v
v

x

v
u

x

v
u

t

v

zyyyxy 







1

1
''

1
''

tan

'
'

'
'

'
'

 
(c) 

 

We can rewrite the second, fourth, and sixth terms on the right-hand side of (c) in flux form. This 

is a bit simpler than it was before, however. On the sub-grid (i.e., turbulence) scale, the following 

continuity equation applies on constant height surfaces: 

0'
'''

==



+




+




v

z

w

y

v

x

u
 

Multiplying this equation by –v’ and taking the Reynolds average, we obtain: 

0
'

'
'

'
'

' =



−




−




−

z

w
v

y

v
v

x

u
v , which can be written as ( ) 0'' =− vv  

This is a divergence term and, as stated above, is equal to zero on these scales. Conversely, the 

second, fourth, and sixth terms on the right-hand side of (c) comprise an advection term of the 

form '' v− v . Recalling that a flux term is equal to the advection term plus the divergence term 

(which, here, is equal to zero, and thus can be added without changing the result), the advection 

terms can be equivalently written as flux terms: 

z

vw

y

vv

x

vu




−




−




−

''''''
 

Further, we can define turbulent stresses (i.e., the grid-scale-resolved effects of parameterized 

sub-grid processes; note the different definition from the frictional stresses defined earlier) as: 

''vuTxy −=   ''vvTyy −=   ''vwTzy −=  

Substituting these definitions for the flux terms and combining the result with the frictional 

stresses, we obtain: 

( ) ( )

( ) ( ) ( )
















+
+



+
+



+
+

−



−+−+−




−




−




−=





z

T

y

T

x

T

uf
y

p
wuwu

a
uuuu

az

v
w

y

v
v

x

v
u

t

v

zyzyyyyyxyxy 







1

1
''

1
''

tan

 (d) 
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From left to right, the terms of (d) are the local time-rate-of-change (on the grid scale only, as 

this is what the model predicts), advection terms, curvature terms, a pressure gradient term, a 

Coriolis term, and turbulent and frictional stresses. All terms of the form ''ba  are parameterized. 

The y_  terms, which explicitly refer to sub-grid-scale friction that is a function of molecular 

motion, are also parameterized. Other terms not involving perturbations are resolved on the 

model grid. 

Generally, (d) is written in a form that drops the resolved-scale notation, e.g., 

vFfu
y

p

a

uw

a

u
v

t

v
+−




−−−−=







 1tan2

v  (e) 

 

where Fv represents all sub-grid-scale processes, as in (B). Otherwise, (e) closely resembles (2). 

The remaining equations (1) and (3) through (7) can be transformed similarly. 


