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Model Initialization 

Learning Objectives 

Following this lecture, students will be able to: 

• Provide a basic description of how numerical models obtain their initial conditions. 

• Distinguish between the strengths and weaknesses of in situ versus remotely sensed 

observations, including errors introduced by retrieval algorithms. 

• Describe what is meant by model spin-up and how cold, warm, and hot starts differ from 

one another. 

• Describe techniques by which observation targeting, or the process of identifying which 

observation(s) in which location(s) would result in the greatest forecast impact, can be 

performed. 

 

Introduction to Model Initialization 

Initial conditions are required for both idealized and real-data numerical simulations. As their 

name implies, initial conditions provide initial values for all model variables at all model grid 

points (or cells, volumes, etc.). The method by which observations are processed to define the 

initial conditions is known as initialization. The processing that occurs during model 

initialization includes: 

• Performing quality control on the available observations. 

• Assimilating the observations to update a first guess for the initial conditions. 

• If applicable, ensuring dynamical balance in the updated initial conditions. 

These concepts are discussed further in this and subsequent lectures. We begin with the first 

concept, observation processing and quality control. 

 

Observations 

There exist two broad classes of observations: in situ and remotely sensed. In situ observations 

are those collected by sensors located at the observation site, with examples that include 

METAR, rawinsonde, buoy, and aircraft observations. By contrast, remotely sensed observations 

are those collected by sensors not located at the observation site, with examples that include 

Doppler radar, lidar, wind profiler, and satellite imagers. 

Remote-sensing observation platforms measure electromagnetic energy at specific wavelengths, 

varying based on what they are trying to measure. Two classes of remote-sensing observation 

platforms exist: active and passive. Active remote-sensing platforms contain sensors that emit 
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radiation energy and measure the atmospheric response to that radiation, with Doppler radar 

being a representative example of an active remote-sensing platform. Passive remote-sensing 

platforms contain sensors that measure radiation emitted, scattered, or reflected by some feature; 

they do not emit radiation themselves. Satellite imagers are examples of passive remote-sensing 

platforms. 

Most observations, particularly those that are remotely sensed, are not of model variables. For 

example, consider Global Positioning System (GPS) radio occultations, which make use of radio 

waves transmitted by GPS satellites. These radio waves are deflected as they travel through the 

Earth’s atmosphere, the extent of which is known as the bending angle. Models do not predict 

bending angle, but they do predict the temperature and moisture fields that influence the bending 

angle. Thus, retrieval algorithms, representing physically or empirically derived relationships 

between observed and predicted variables, are needed to convert the observations to something 

usable by the model.  

In situ and remotely sensed observations have strengths and weaknesses that must be accounted 

for when being used to initialize a model. These include: 

In Situ Observations 

Strengths 

• Minimal use of retrieval algorithms. In situ observation platforms, including METAR 

stations, buoys, ships, aircraft, and rawinsondes, typically provide observations of fields 

such as temperature, moisture content, wind speed and direction, and pressure that are 

closely related to model variables. As a result, errors associated with using a retrieval 

algorithm are minimized with in situ observations.  

Weaknesses 

• Observation representativeness. In situ observations are point observations. Thus, an 

observation may reflect local, sub-grid-scale variability that is not representative of the 

scales of motion resolved by the model. Representative examples include observations 

taken within mountain waves and atmospheric boundary layer eddies, as well as those 

taken by poorly sited instruments (e.g., bank thermometers). Apart from those collected 

from poorly sited instruments, temporally averaging the observations over some modest 

duration may help to mitigate this weakness by damping the local variability. 

• Data density. In situ observations tend to be tightly clustered around where people live; 

more precisely, they are unevenly distributed. A representative example of this is given in 

Fig. 1 below. As a result, when only in situ observations are considered, the resulting 

initial conditions may be relatively uncertain in areas with lower data density. 
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• Temporal availability. Observations from selected platforms, particularly rawinsondes 

(once every 6, 12, or 24 h) and aircraft (dependent on flight route), are not available as 

frequently as are observations from other platforms. Since initial condition quality is 

partially related to the number of available observations, this can influence initial 

condition quality at times when rawinsonde or numerous aircraft observations are 

unavailable and remotely sensed observations are not considered. 

• Observation uncertainty. Sensors are calibrated such that the observations they collect 

are accurate only to within a specified tolerance threshold. This defines the observation 

uncertainty inherent to a given observation platform. This is typically small in magnitude 

but must be accounted for in the data assimilation process. 

 

Figure 1. Observations, colored by type per the legend, assimilated at 0000 UTC 2 December 

2015 by the ensemble adjustment Kalman filter used by the NCAR Ensemble. Satellite cloud-

track winds (green) are the only remotely sensed observation type assimilated. Note the lack of 

observations over Mexico and Canada versus the United States, owing both to population density 

and observation infrastructure. 

 

Remotely Sensed Observations 

Strengths 

• High spatial and temporal resolution. Most remote-sensing platforms have high spatial 

and temporal resolution. For instance, National Weather Service Doppler radars provide 

observations every five minutes every 250 m in the radial direction (away from the radar) 

and every 0.5° above the horizon at elevation angles ranging from 0.5° to 19.5°. Further, 

https://www2.mmm.ucar.edu/projects/ncar_ensemble/legacy/
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most satellite-sensed observations that are routinely used to initialize a model have a 

spatial resolution that is finer than that of the model (∆x ~ 0.5-8 km). 

Weaknesses 

• Observation uncertainty. As with in situ platforms, sensors are calibrated such that the 

observations they collect are accurate to within a specified tolerance. This defines the 

observation uncertainty inherent to a given observation platform. This is typically small 

in magnitude but must be accounted for in the data assimilation process. 

• Retrieval algorithm errors. Relationships between remotely sensed and model variables 

are imperfect owing to our limited understanding of the underlying physics. In some 

cases, the underlying relationships are ill-posed; e.g., an observed quantity is related to 

two or more model variables, and knowledge of the other variable(s) that we are also 

trying to update is needed to obtain a given model variable. Consequently, retrieval 

algorithms introduce additional observation uncertainty that can compromise the quality 

of the initial conditions if this uncertainty is large. 

• Limited ability to observe near the surface. Satellite-based remote-sensing platforms 

are ideal for observing the upper atmosphere. However, some sensors are not capable of 

sensing, whether accurately or at all, below clouds. Consequently, there are generally 

fewer satellite-based remotely sensed observations near the surface, including in the 

atmospheric boundary layer. 

 

Quality Control 

Before an observation can be assimilated to update a model’s initial conditions, one must ensure 

that the observation is of sufficiently high quality such that its assimilation does not degrade the 

initial conditions’ quality. The means by which this is accomplished are known as quality 

control. A quality-control algorithm must be able to handle multiple observation types from 

multiple observation platforms in multiple locations, to accurately distinguish between erroneous 

and robust observations, and to work with a minimum of human intervention.  

There are multiple reasons why an individual observation may be in error. For example, an 

observation may be robust, but corrupted values of the observation’s value, time, date, or 

location may occur upon its transmission to the agency responsible for the observation platform. 

Observations may also have errors due to an improper calibration of the sensor used to collect 

the observation. Such errors are known as systematic errors, as the extent to which the 

observation is erroneous is not random and thus theoretically can be corrected. By contrast, 

observations may have errors due to a sensor malfunction. Such errors are known as random 

errors, as the extent to which the observation is erroneous is altogether random. Finally, as 
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described above, an observation may be representative of sub-grid- rather than resolved-scale 

variability. In this case, the observation is not erroneous but is not supported by observations 

taken at nearby times and/or locations. Such an error is known as a representativeness error. 

There are many tests that can be employed to determine whether an observation is in error. These 

include, but are not necessarily limited to, the following: 

• Sensor Limit Tests: Is the observation outside of the range of values that the instrument 

used to collect the observation can reliably measure? 

• Climatological Limit Tests: Is the observation well outside of the range of previously 

observed values at the observation location? 

• Physical Limit Tests: Is the observation out of the range of physically plausible values, 

e.g., reporting negative relative humidity or wind speed? 

• Temporal Consistency Checks: Is the observation inconsistent with observations taken 

at earlier (and, if available, later) times? 

• Spatial Consistency Checks: Is the observation inconsistent with nearby observations? 

Does the observation depart significantly from the first guess for the initial conditions? 

Quality-control algorithms must reliably distinguish between robust and erroneous observations. 

This includes both identifying erroneous observations and not excluding robust observations. In 

fact, incorrectly identifying a robust observation as erroneous can degrade the initial conditions 

and thus the subsequent forecast’s quality. This most commonly occurs when an observation is 

erroneously determined to be non-representative.  

To illustrate this point, we consider the example of the 24-25 January 2000 eastern United States 

blizzard. This event was associated with particularly poor forecasts from regional and global 

numerical weather prediction models at lead times of 6-18 h. Zhang et al. (2002, Mon. Wea. 

Rev.) demonstrated that this forecast skill degradation primarily resulted from the improper 

rejection of upper-tropospheric wind observations from the 0000 UTC 24 January 2000 Little 

Rock, AR sounding.  

The 0000 UTC 24 January 2000 Little Rock, AR sounding (Fig. 2) indicates 140 kt winds at 300 

hPa level. However, surrounding observations at Springfield, MO, Shreveport, LA, and Jackson, 

MS indicate much weaker winds, as does the 0-h RUC model analysis valid at this time (Fig. 3). 

Consequently, the data assimilation systems used at the time to prepare initial conditions for 

most major modeling systems rejected this observation as being unrepresentative of either 

surrounding observations or the first guess for the initial conditions. However, when this 

observation is assimilated, the resulting initial conditions depart substantially from those 

provided by operational models (Fig. 4), and these departures influence the subsequent forecast –

in this case, resulting in a better snowstorm prediction. 
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Figure 2. 0000 UTC 24 January 2000 Little Rock, AR sounding. Figure obtained from the 

University of Wyoming Atmospheric Sounding Archive. 

 

 

Figure 3. 300 hPa analysis valid at 0000 UTC 24 January 2000. Station plots depict observations 

of temperature (red, °C), dew point temperature (green, °C), and wind speed and direction (blue; 

half-barb: 5 kt, full barb: 10 kt, flag: 50 kt). Also depicted is the 0-h RUC analysis of streamlines 

(black), isotachs (shaded, kt), and divergence (yellow contours, x10-5 s-1). Note the discrepancy 

between the 300 hPa wind speed observation at Little Rock, AR and the 0-h RUC isotach 

analysis. Figure obtained from the Storm Prediction Center Surface and Upper Air Map Archive. 

 

http://weather.uwyo.edu/upperair/sounding.html
https://www.spc.noaa.gov/obswx/maps/
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Figure 4. 300 hPa wind difference magnitude (contoured every 3 m s-1) between an initial 

analysis that assimilated the Little Rock, AR wind observation and initial analyses from the (a) 

Eta and (b) ECMWF models that did not assimilate the Little Rock, AR wind observation. Wind 

difference magnitudes are approximately 12 m s-1 in (a) and 15 m s-1 in (b) near Little Rock, AR, 

roughly consistent with the departure of the observed wind speed from the 0-h RUC analysis in 

Fig. 3. Note that not all differences in each panel result exclusively from the assimilation of the 

Little Rock, AR wind observation; other data differ, as do the data assimilation systems used. 

Figure reproduced from Zhang et al. (2002, Mon. Wea. Rev.), their Fig. 10. 

 

Model Spinup 

There are three spatial scales of interest with respect to model initialization: those resolved by 

the observation network (often the coarsest), the initial conditions, and the model simulation 

(often the finest). Some means of generating realistic atmospheric variability on scales smaller 

than those explicitly resolved by the observation network is necessary for the scales resolved by 

the initial conditions to be identical to those resolved by the model simulation. This is typically 

achieved by using the short-range forecast of an earlier simulation as the first guess for the initial 

conditions, which is then subsequently adjusted using the available observations.  

How should we handle model variables for which reliable observations do not exist (and thus we 

cannot directly update the first guess for their values), are extremely computationally expensive 

to assimilation, and/or for which reliable relationships between the observations and model 

variables do not exist? A prime example is given by microphysical quantities – mixing ratio and, 

if predicted, higher-order moments – for all species except water vapor. A first guess can provide 

estimates of these variables, but we generally do not have direct observations of these quantities, 

and they are generally not well-related to variables for which we do have observations (e.g., the 

500 hPa height is not directly related to the rain-water mixing ratio). Consequently, a numerical 

model simulation may elect to depict the kinematic and mass fields associated with active clouds 

and precipitation in their initial conditions but not resolve the clouds or precipitation. 

With all of this in mind, there are three classes of model initializations: 
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• Cold Start: Atmospheric variability is absent on the scales between those resolved by the 

numerical model and those resolved by the initial conditions. Initial conditions for 

microphysical variables except water vapor are typically missing. A representative 

example of a cold-start model initialization is that in which the analysis from a larger-

scale model such as the GFS is used to provide initial conditions for a higher-resolution 

numerical model simulation. 

• Warm Start: Atmospheric variability is present on all scales resolved by the numerical 

model. Initial conditions for microphysical variables except water vapor are still typically 

missing, however. A warm-start model initialization typically results from using a cycled 

data assimilation system to generate realistic kinematic fields on the scales resolved by 

the numerical model simulation. Most operational forecast models use warm-start 

initializations. 

• Hot Start: Atmospheric variability is present on all scales resolved by the numerical 

model. Initial conditions for microphysical species’ mixing ratios are present, and as a 

result the model initial conditions include explicit representation of precipitating features 

that are ideally in balance with the initial kinematic and mass fields. The HRRR model, 

which assimilates radar reflectivity data to prescribe initial values for latent heating rate 

and microphysical prognostic variables, is an example of a hot-start initialization. 

In the absence of atmospheric variability on the scales between those resolved by the numerical 

model and those resolved by the initial conditions, or in the absence of initial conditions for all 

microphysical variables except water vapor, the model must generate (or spin up) the needed 

fields. The time over which this occurs is known as the spinup period. The length of the spinup 

period typically ranges from 1-12 h depending upon the extent to which the model needs to 

generate the necessary small-scale variability and microphysical data. This leads to a general 

recommendation to begin a numerical model simulation 6-12 h before the forecast period of 

greatest interest. 

Dynamical imbalances can result as the model spins up atmospheric variability on scales smaller 

than those resolved by the initial conditions. The model generates spurious inertia-gravity waves, 

which are associated with rapidly fluctuating surface pressure as they pass a location, to attempt 

to mitigate these imbalances. The domain-averaged local rate of change of the surface pressure 

tendency can thus be used as a metric to assess model spinup (Fig. 5). Note, however, that 

inertia-gravity wave activity declines but does not altogether end as the model spin-up period 

ends; the model can produce physically realistic inertia-gravity waves in response to imbalance 

throughout its duration.  
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Figure 5. Domain-averaged local rate of change of the surface pressure tendency (hPa s-2) as a 

function of time for two model simulations, one using well-balanced initial conditions (dashed) 

and one using poorly balanced initial conditions (solid). Note the logarithmic scale to the y-axis. 

As the model spin-up period ends, roughly between 6-12 h, the slopes of each curve asymptote to 

zero. Figure reproduced from Warner (2011), their Fig. 6.15b. 

 

Observation Targeting 

Fundamentally, forecast quality is directly proportional to both initial condition quality and 

model quality. Since first-guess initial conditions are typically provided by the short-term 

forecast from a previous simulation, the initial conditions’ quality can be improved if model 

error is reduced. Initial-condition quality can also be improved through better using existing 

observations or deploying new observation platforms, whether they are new routine platforms or 

temporarily as part of a field program or targeted reconnaissance effort. 

Observation targeting describes the processes by which where to optimally site additional 

observations to provide the largest forecast improvements can be determined. This is most often 

done in the context of a new observation platform or field campaign. To illustrate the concept of 

observation targeting, consider the example of numerical forecasts of the track of Hurricane 

Sandy. Fig. 6 depicts forecast tracks of Sandy from three successive cycles of the twenty-

member GFS Ensemble. There is minimal spread in the track forecasts prior to approximately 

120 h, after which time the forecast tracks significantly diverge, with some forecasts indicating a 

track out to sea and others toward the United States or Canadian Maritimes. 

Presumably, this forecast divergence results in part from uncertainty in the initial conditions, but 

where? And of what model variables? An observation targeting method must identify the 

observation types and locations that would have the greatest impact on the model forecast, 

whether operationally in the context of the next model cycle or in hindcasts for this model cycle. 

Ideally, collecting and assimilating these observations will improve the forecast’s skill. However, 

it should be noted that forecast improvement from assimilating targeted observations is miniscule 

when averaged over many cases (e.g., Fig. 7). This is likely due to several factors, including 

imperfect targeting methods and unaddressed model errors. That said, there are many different 
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methods by which observation targeting may be accomplished, and we now wish to briefly 

describe several of these methods and their applications. 

 

Figure 6. 240-h forecast tracks for Hurricane Sandy (2012) from the GFS Ensembles initialized 

at 1200 UTC 23 October 2012 (blue), 1800 UTC 23 October 2012 (green), and 0000 UTC 24 

October 2012 (red). The analyzed position of Sandy at 1200 UTC 23 October 2012 is denoted by 

the black square, and the observed track of Sandy through dissipation is given by the black line. 

 

Figure 7. Root-mean squared error (m) of 1000 hPa and 500 hPa geopotential height forecasts at 

lead times of 30, 36, 42, and 48 h from the FASTEX field experiment. Root-mean squared error 

is presented for two sets of ECMWF forecasts, one in which no targeted dropsonde observations 

are assimilated and one in which all targeted dropsonde observations are assimilated. The 

singular-vector technique was used to target the dropsonde observations, and forecasts are 

verified only over the targeted regions. Dots to the left of the dashed line indicate a positive 

impact from assimilating targeted observations (e.g., larger error without targeted dropsondes). 

Figure reproduced from Montani et al. (1999, Quart. J. Roy. Meteor. Soc.), their Fig. 8. 
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Ensemble Variance/Spread-Based Methods 

This method assumes that forecast error growth is largest where the initial condition uncertainty 

and thus the potential for initial-condition errors are largest. For an ensemble of model initial 

conditions, uncertainty can be quantified by the ensemble spread or variance. Initial-condition 

uncertainty is typically largest where there are few observations and where sharp gradients in 

model variables exist. Representative examples of each include northern Mexico or much of 

Africa, where few observations are routinely available, and near shortwave troughs or frontal 

boundaries. 

Collecting and subsequently assimilating observations from locations in which initial condition 

uncertainty is large can theoretically help constrain model error growth and improve forecast 

quality. This is true in a general sense, but how can the best locations for these observations be 

determined? One could trace the initial condition uncertainty forward in time and space to obtain 

a first guess as to where targeted observations should be collected, but other methods described 

below provide more robust means by which this may be accomplished.  

Ensemble Sensitivity Metrics 

There are multiple quasi-objective ensemble-based methods by which the locations and types of 

targeted observations that may exert the greatest positive impact on the subsequent forecast can 

be identified. 

One method, ensemble sensitivity analysis (e.g., Ancell and Hakim 2007, Mon. Wea. Rev., 

among countless others), can be used to relate a forecast metric of interest J to a model variable 

x at the same or earlier time. Specifically, 

( )
( )x

xJ

var

,cov
=





x

J
 

This represents the change in the forecast metric as one changes the model field and can be 

shown to represent a form of linear regression between J and x. cov represents covariance and 

var represents variance. Typically, this expression is multiplied by the standard deviation of the 

model variable x, such that this expression gives the expected change in J that results from a one 

standard deviation change in x. An example of this method is depicted in Fig. 8. 
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Figure 8. Ensemble sensitivity metric (shaded; mm change per one standard deviation change in 

the model variable x) relating changes in the forecast metric J to a model variable x. Here, J is 

the area-averaged forecast precipitation over central Oklahoma between 22-25 h into the forecast 

and x is the 315-K isentropic potential vorticity at (a) 0 h, (b) 6 h, (c) 12 h, and (d) 18 h. Positive 

values indicate that a one standard deviation increase in x is associated with a positive change of 

the specified amount in J, whereas negative values indicate that a one standard deviation 

increase in x is associated with a negative change of the specified amount in J. Contours in each 

panel depict the ensemble-mean 315-K isentropic potential vorticity (PVU). Values of the 

ensemble sensitivity metric that are statistically significant to greater than 95% confidence, 

indicating robust linear relationships between J and x, are stippled. Figure reproduced from Torn 

and Romine (2015, Mon. Wea. Rev.), their Fig. 5. 

Applying this method to targeted observations, consider Fig. 8c. The 0000 UTC model run 

indicates that the 22-25 h forecast precipitation over central Oklahoma is particularly sensitive to 

the intensity of a shortwave trough evident in the 315-K isentropic potential vorticity field over 

the Texas Panhandle in the 12-h forecast. This suggests that targeting observations of variables 

that are related to isentropic potential vorticity in the 12-h forecast over the Texas Panhandle, 

followed by assimilating them into the initial conditions for a subsequent simulation starting at 

that time, could result in improved (or at least more certain/less variable) precipitation forecasts 

at 10-13 h (equivalent to the earlier 22-25 h forecast period) over central Oklahoma. 

A related method uses empirical orthogonal functions (EOFs) to identify modes of variability at 

a given forecast time from an ensemble of numerical simulations. Once the leading mode(s) of 

variability have been identified, linear correlation is used to connect them to the variability of a 

given model variable at the same or earlier forecast times. Figs. 9 and 10 illustrate this method, 

and Zheng et al. (2013, Wea. Forecasting) provides more details about the method. The 

application of this method to targeted observations is similar to that for ensemble sensitivity. 
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Figure 9. (upper left) 120-h GFS Ensemble-mean forecast mean sea level pressure (contoured, 

hPa) and standard deviation (shaded, hPa) from the 0000 UTC 15 September 2017 run of the 

GFS Ensemble. (upper right) The leading EOF of the ensemble’s 120-h sea level pressure 

forecasts, explaining nearly half of the total variance, is primarily characterized by uncertainty in 

the along-coast position of tropical cyclone Jose. (lower left) The second EOF of the ensemble’s 

120-h sea level pressure forecasts is primarily characterized by uncertainty in Jose’s intensity. 

(lower right) The third EOF of the ensemble’s 120-h sea level pressure forecasts is characterized 

by uncertainty primarily in Jose’s proximity to the United States coast. Figure obtained from 

http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/EnSense_Main.html. 

 

Note that the ensemble sensitivity, EOF, and similar methods discussed below and elsewhere all 

use linear correlation. Correlation does not necessarily imply physical causation, which must be 

kept in mind when interpreting the results from either method. Even at their best, these methods 

are able to capture only a fraction of the true variance in the system, in part because the real 

atmosphere is highly non-linear. Nevertheless, they provide a means of identifying locations 

where targeted observations might improve a specific aspect of a numerical model forecast, 

particularly in the context of ensemble numerical simulations. 

 

http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/EnSense_Main.html
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Figure 10. Ensemble sensitivity metric, here representing the linear correlation between the 

leading EOF pattern in the upper-right panel of Fig. 9 and the GFS-Ensemble–forecast 500 hPa 

geopotential height field at forecast lead times of 2.5 to 5 days (or 0 to 2.5 days prior to the valid 

time of the EOF analysis depicted in Fig. 9). The upper-left panel indicates that decreasing the 

500 hPa geopotential height in eastern North America in the five-day forecast (cool colors) is 

associated with positive EOF1, indicating a further northeast position for tropical cyclone Jose at 

the 120-h forecast time. Tracing this back to earlier forecast times, the lower-right panel 

indicates that a stronger, faster-moving shortwave near the Canada-United States border in the 

2.5-day forecast is associated with positive EOF1, also indicating a further northeast position for 

Jose at 120-h. Figure obtained from 

http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/EnSense_Main.html. 

 

Adjoint-Based Methods 

Similar to the ensemble-based methods described above, the adjoint method seeks to quantify the 

sensitivity of some forecast measure to the initial conditions. An adjoint operator, representing 

the inverse of the linearized version of the numerical model, identifies the quantitative impact of 

small, arbitrary perturbations to the initial conditions on the chosen forecast measure. These 

arbitrary perturbations may be random or may be obtained by some other means (e.g., from the 

difference in earlier non-linear and linear model forecasts valid at the new forecast’s initial time). 

An idealized schematic of the conceptual underpinnings and operation of adjoint-based methods 

is provided in Fig. 3 of the “Lateral Boundary Conditions” lecture notes. Applied to targeted 

observations, the adjoint method identifies locations where initial condition uncertainty and, by 

extension, forecast error growth are large by identifying where small perturbations to the initial 

conditions have the largest impact on the subsequent forecast.  

http://breezy.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/EnSense_Main.html
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Singular-Vector Technique 

The singular-vector technique provides a method to quantify how initial condition uncertainty or 

error propagates forward in time. It uses a linear version of the numerical model to identify the 

structures whose amplitudes grow most rapidly over a short but physically relevant time frame 

(e.g., 24 h). Applied to targeted observations, singular vectors provide insight as to the locations 

where added observations would have the greatest theoretical impact upon reducing forecast 

error growth if assimilated into the initial conditions. An illustrative example of the benefit 

obtained by using singular vectors to target observations is provided in Fig. 7. 


