

Using the WRF-ARW on UWM’s Updated mortimer HPC

Guide for WRF-ARW Version 4.5.1

December 2023

Introduction

This guide is designed to facilitate basic compilation and execution of WRF-ARW v4.5.1 using

the Intel compiler suite and OpenMPI on UWM’s updated mortimer HPC. I cannot cover every

option available to you when installing or running the model; for the gory details, please see the

WRF-ARW User's Guide, available online at:

Welcome to WRF User’s Guide! — WRF Users Guide documentation (ucar.edu)

I also recommend reading over and familiarizing yourself with the information found in the

UWM HPC User’s Guide, available online (from on-campus machines only) at:

http://www.peregrine.hpc.uwm.edu/Webdocs/uwm-rc-user-guide.pdf

Much of this guide is general to basic terminal and supercomputing environments.

The steps outlined in this User’s Guide are generally applicable to both earlier and newer

versions of the WRF-ARW model; however, there may be subtle differences in compilation

options between each version of the model. Always read the installation information from the

appropriate version of the WRF-ARW User’s Guide first!

What You Need to Know First

Compute Nodes: We will compile WRF-ARW on a compute node. To interactively connect to a

compute node, issue the following command:

srun --nodes=1 --mem=8g --pty --preserve-env $@ $SHELL -l

The remainder of this guide assumes that you are on a compute node and have completed all of

the steps in this “What You Need to Know First” section.

Compile Environment: We wish to start with a clean compile environment. To do so, purge all

modules that you may currently have loaded:

module purge

https://www2.mmm.ucar.edu/wrf/users/wrf_users_guide/build/html/index.html
http://www.peregrine.hpc.uwm.edu/Webdocs/uwm-rc-user-guide.pdf

We will use the Intel compilers to build WRF on mortimer. The Intel compilers are available

through a module that will set the necessary path, library, and execution variables for you

automatically. To load this module, run:

module load icc/20.4

MPI Libraries: You will use OpenMPI to run parallelized (multiple CPU) jobs on the cluster. To

load the OpenMPI module, run the following after loading the Intel compiler module:

module load openmpi/4.1.2

NetCDF and HDF5 Libraries: Before compiling and executing the model code, you’ll need to

point to netCDF and HDF5 installations on the server. This is also done using modules:

module use /raid-11/LS/evans36/modules

module load netcdf-4.9.2

module load hdf5-1.14.3

PnetCDF Libraries: If you wish to use the parallel netCDF file output option (not

recommended), you must also load the pnetcdf module:

module load pnetcdf-1.12.3

GRIB2 Libraries: To use GRIB2-formatted data as inputs to WRF-ARW (which you will need to

do), you must also load the grib2-libs module:

module load grib2libs-dec2023

Setting the Stack Size: The stack size on Linux and Unix machines controls the default amount of

memory that is allocated to new processes (or threads). The default value for the stack size is too

low for WRF-ARW, however. We can set it to be unlimited using the following:

ulimit -s unlimited

I recommend adding all of the above commands to your ~/.bash_profile file so that they load

automatically each time you log in. To do so, issue the following command from the terminal:

nano ~/.bash_profile

In the nano text editor, simply add the commands from above to the end of the file, save the file

(Ctrl-O), exit (Ctrl-X), and then log out and log back into the supercomputer.

There are other variables that you may need to set along the way during WRF or WPS

compilation and/or run-time; I will alert you to those where appropriate.

Mortimer Access Considerations

Login Details: mortimer is accessed via SSH as follows:

ssh <user>@submit.mortimer.hpc.uwm.edu

Activities such as compiling model code can be performed on the same node to which you log in

or by submitting the compilation to the job scheduler.

Remote Access: mortimer is accessible only when on-campus or when using the campus VPN.

To download the VPN software, visit https://remote-access.uwm.edu/, login with your ePanther

credentials, and download and install the appropriate GlobalProtect VPN client. You will need to

provide it with your ePanther credentials when you first log in; you will also need to use the

Microsoft Authenticator app for multifactor authentication each time you log in.

Data Transfer: To transfer data from mortimer to your laptop or desktop using sftp or scp, you

must directly connect to the disk on which your data reside. If your data reside on /raid-08, this is

raid-08; if your data reside on /raid-11, this is raid-11. This is done as follows:

sftp <user>@<disk>.mortimer.hpc.uwm.edu

where <user> is replaced with your username and <disk> is replaced with the disk (raid-08, raid-

11, etc.) on which your data reside.

Visualization: By default, only command-line resources are available on mortimer. Graphical, or

XWindows, resources are available only on a dedicated visualization node. This node is best

accessed directly in a distinct SSH session:

ssh -Y <user>@vis-1.mortimer.hpc.uwm.edu

Part I: Obtaining & Compiling the Model

Obtaining the WRF Model Code

You can obtain the WRF model code using git. Change into the directory into which you wish to

install WRF-ARW and WPS; this should be a subdirectory in your “Data” directory. Next, issue

the following two commands:

git clone https://github.com/wrf-model/WRF

git clone https://github.com/wrf-model/WPS

These will clone the git repositories for WRF-ARW (v4.5.2 at the time of this writing) and WPS

(v4.5 at the time of this writing).

Installing the WRF Model Code

Once you have cloned the WRF repository, you need to switch into the newly created WRF

directory. First, issue “./configure” (without the quotes) to the command line to start model

configuration. A list of configuration options will appear. You want to choose option 15, “15.

(dmpar) INTEL (ifort/icc)”. It will then ask you for a nesting option. Unless you plan

on using advanced nesting options with the model, I recommend using option #1, the default, for

basic nesting capabilities.

Next, we need to make a minor edit to configure.wrf. Open this in nano or another text

editor, then move to line 171 where the variable FC is defined. Remove the word ‘time’ in front

of $(DM_FC), then save the file and exit the text editor.

If you wish to use WRF’s moving nest capabilities, heed the warning message that appears after

configure finishes and copy share/landread.c.dist to share/landread.c

before continuing.

If you wish to use this WRF installation with the Data Assimilation Research Testbed (DART)

software, a couple of additional edits to Registry/Registry.EM_COMMON are needed.

Open that file with a text editor. Search (Ctrl-W) for h_diabatic. Change rdu to i012rhdu. Next,

search for refl_10cm. Change hdu to i012rhdu. Save this file, exit the text editor, and return to

the main WRF directory.

We’re now ready to compile the model. To do so, issue the following command:

./compile em_real

Compilation will take approximately 60-90 minutes to complete. The compile process may

appear to hang for several minutes when compiling several parts of the model code, especially on

the cumulus parameterization driver and a module called first_rk_step_part2; this is expected.

Successful compilation will produce “ndown.exe,” “real.exe,” “tc.exe,” and

“wrf.exe” files in WRF/main.

Installing the WRF Pre-Processor (WPS) Code

Installing the WPS code follows a similar process to installing the WRF model code. Once you

have cloned the WPS repository, switch into the newly created “WPS” directory. Ensure that this

directory is on the same level as the WRF directory but is not in the WRF directory.

If the grib2libs-dec2023 module is not loaded (e.g., you logged off of mortimer after compiling

WRF and did not add the module load command to your ~/.bash_profile file), lead it before

proceeding.

If you are not already on a compute node, use slurm-shell to connect to one. Run

“./configure” to start model configuration. A list of configuration options will appear.

Choose the option that reads most similar to, “Linux x86_64, Intel compiler

(dmpar)” (currently option 19).

Next, compile the code (./compile). Compilation should take 1-3 minutes. Once compilation

has completed, look for geogrid.exe, ungrib.exe, and metgrid.exe in the current

directory.

Part II: WPS

What does WPS do?

The WPS has three tasks: defining model domains, extracting initialization data for the model

simulation from GRIB files, and horizontally interpolating that data to the model domain and

boundaries. All of this is accomplished through a namelist file and a few command line options.

If you are working through this tutorial and using the WRF-ARW model for the first time, I

recommend that you do so alongside the related material in the “Basics for Running the Model”

section of the WRF-ARW Online Tutorial, available at:

ARW OnLine Tutorial (ucar.edu)

Step 1: Defining a Domain

Defining a domain is done through geogrid.exe. Options for the domain are set in

namelist.wps. Open this file in some text editor. The first two sections, &share and

&geogrid, are the only two sections of this file to worry about now.

https://www2.mmm.ucar.edu/wrf/OnLineTutorial/

In &share, assuming you are not creating a nested model run, change max_dom in 1. Change

start_date and end_date to the appropriate dates and times. These take the form of 'YYYY-MM-

DD_HH:MM:SS'. The interval between input times of your model data is specified by

interval_seconds; for three-hourly data, this will be 10,800. Note that unless you are doing a

nested run, only the first option in each list matters. Information on nested runs can be found at

the end of this document.

In &geogrid, e_we and e_sn define the size of your domain in gridpoints, with e_we defining

the east-west size and e_sn defining the north-south size. Change these to appropriate values.

geog_data_res defines the horizontal resolution of the geographic data files that you wish to use

to setup your domain and has four options: 30s, 10m, 5m, and 2m. Generally 5m is fine for a grid

spacing of about 20 km or larger; switch down to 2m or 30s for lower grid spacing values. If you

want to include inland lake information with the 30s data set, you can use “30s_with_lakes” in

lieu of 30s. There are other options available, and I recommend that you review the WRF-ARW

User’s Guide for details.

dx and dy control your grid spacing; generally they should be equal to one another and are given

in meters (default = 30000 = 30 km). map_proj deals with the desired map projection of your

run; lambert, mercator, or lat-lon are suggested for most tasks, with the Lambert projection

favored for mid-latitude simulations and the Mercator projection favored for simulations at

tropical latitudes. ref_lat and ref_lon are the center point of your domain in latitude and

longitude, respectively. Note that for west longitudes, ref_lon should be negative. The remaining

fields vary depending upon which map projection you use. For instance, the Lambert projection

requires three additional fields: truelat1, truelat2, and stand_lon. truelat1 and truelat2 define the

“true” latitudes for the Lambert map projection; unless moving to the southern hemisphere, the

default values should be fine. stand_lon specifies the longitude parallel to the x-axis for conic

and azimuthal projections; this value should generally be close to that of ref_lon. The Mercator

projection requires just one additional field, truelat1. The Latitude-Longitude projection requires

three additional fields: pole_lat, pole_lon, and stand_lon. This projection is recommended only

for global runs and for such runs should not require any changes to pole_lat and pole_lon.

Finally, geog_data_path defines the path to where the geographic data resides on the server. Set

this to '/tank/data/LS/evans36/WRFv4/geog'. Once these variables are set, save

namelist.wps and return to the command line.

Finally, run geogrid.exe:

./geogrid.exe

You can safely ignore any “Failed to create UCP worker” message that might appear shortly

after running this program. Once it is done (and it should give you a success message if it

successfully completed), check that you have a geo_em.d01.nc file in the current directory.

If you are using multiple domains, there should be a geo_em.d0#.nc file for each domain.

Step 2: Getting Model Data

Extracting model data from GRIB files is accomplished through ungrib.exe. There are two

steps you do need to do before running the program: linking the appropriate variable table

(Vtable) and linking the appropriate GRIB data.

Residing in the WPS/ungrib/Variable_Tables/ directory are a series of Vtable.xxx

files, where the xxx denotes a model name. These files tell the ungrib program about the format

of the data files to be degribbed. If you are using the GFS model, for instance, you'll note a

Vtable.GFS file in that directory. In the main WPS directory, issue the following command to

link this Vtable file:

ln -s ungrib/Variable_Tables/Vtable.GFS Vtable

where you would substitute for GFS as appropriate for your initialization data set. For data sets

that do not have a corresponding Vtable file in the default WRF installation, you will either need

to create your own using the GRIB packing information from your data set or find one that

someone else has already made for that data set.

Next, you need to link your model data GRIB files to the WPS directory. You can obtain GRIB

data used to initialize the model from NCEP’s NOMADS data server and/or UCAR’s Research

Data Archive for most data sources. If you need help finding data, please ask! Download these

files to the supercomputer, identify where you have placed these files on the supercomputer, and

issue the following command:

./link_grib.csh /path/to/model/data/model_data*

where you will replace /path/to/model/data with the appropriate path and model_data.t00z* with

the appropriate file name format of the data files that you wish to link. This will create a series of

GRIBFILE.xxx files in the WPS directory.

Before running ungrib, clear out all old GRIBFILE., FILE:, and PFILE: files that may

exist to avoid inadvertent errors when running the model. Finally, run ungrib.exe. If all goes

well, you'll see a success message on screen and multiple files of the format FILE:YYYY-MM-

DD_HH will be present in the WPS directory.

Step 3: Interpolating Model Data

Finally, to horizontally interpolate the model data (obtained in Step 2) to the domain (obtained in

Step 1), the metgrid.exe program is used. At this point, except in rare circumstances, you

will not need to change any of the variables in namelist.wps.

Instead of running metgrid.exe directly, as with geogrid.exe and ungrib.exe, we use

a job submission script to run metgrid.exe on multiple CPUs. A job submission script specific to

our model and supercomputer configuration takes the form:

#!/bin/sh

#SBATCH -n ##

#SBATCH --mem-per-cpu=2gb

module load icc/20.4

module load openmpi/4.1.2

module use /raid-11/LS/evans36/modules/

module load grib2libs-dec2023

module load netcdf-4.9.2

module load hdf5-1.14.3

module load pnetcdf-1.12.3

ulimit -s unlimited

mpirun ./metgrid.exe

The second and third line tell the SLURM scheduler, which is used by mortimer to schedule jobs

on multiple CPUs, how many processors to use (replace ## with some number greater than one;

for metgrid, I recommend 16) and to use 2 GB of RAM for each processor. The mem-per-cpu

directive specifies how much memory per CPU to allocate to compile WRF/WPS; in general,

metgrid.exe (and real.exe and wrf.exe to come) only requires <2 GB of RAM per

processor. The last line uses the mpirun program to run metgrid.exe on the earlier-

specified number of processors.

Place the above lines in a new text file named metgrid.sbatch (or similar), change ##

accordingly, and then save the file. To run metgrid, you submit this script to the job scheduler:

sbatch metgrid.sbatch

Assuming that the necessary resources exist to start your job immediately, metgrid will take 1-30

minutes to complete, with larger amounts of time necessary for longer simulation durations

and/or larger numbers of domain grid points. You may check on its progress by examining the

metgrid.log.0000 file in the WPS directory, or by using squeue -u <username>

(replace <username> with your username, without the brackets) to look for your job.

Once metgrid has finished, ensure that you have a series of met_em.d01.YYYY-MM-

DD_HH:00:00 files in the WPS directory. If so, you're done with the WPS and can skip ahead

to Part III of this document. If not, check the metgrid.log.0000 file for possible insight

into any errors that may have occurred at this step.

Advanced Uses: Multiple Domains

If you want to set up for a run using multiple domains, it is fairly simple to do so. When editing

namelist.wps, the following things will be different than as presented in Step 1 above:

• Under &share, set max_dom to 2 (or how many domains you wish to have).

• Edit the second listing in the start_date and end_date options.

• Under &geogrid, change the second listing in parent_grid_ratio to whatever

downscaling factor you wish to have for the inner domain. The default of 3 is fine for

most circumstances (e.g., will take a 30-km outer domain and create a 10-km grid

spacing inner domain).

• Change the second listings of i_parent_start and j_parent_start to where in

the outer domain you wish the lower left of the inner domain to begin.

• Change the second listings of e_we and e_sn to the desired size values of the inner

domain. (Note: the values for these must be an integer multiple of

parent_grid_ratio plus 1.)

• Change geog_data_res as needed, though the default entry will suffice for most uses.

• You will not need to change parent_id from 1 unless you wish to create further inner

domains that are not based off of the outer domain.

Note that if you have more than two domains, simply add a comma at the end of the second

listing under the options listed above and manually type in your third (and beyond) values.

Advanced Uses: “Constant” Input Data Sources

If you want to use a data set as a “constant” value, such as SST data, simply follow steps 1 and 2

above only for the GRIB files containing this constant data, noting that you will be doing this for

just one time. Then, in namelist.wps under the &metgrid section, add a line called

constants_name, e.g.

constants_name = 'SST_FILE:YYYY-MM-DD_HH'

where the file name is whatever the output file from the ungrib.exe program is named. In the

example above, it is an explicitly named (using the prefix option in &ungrib in namelist.wps)

SST data file. If you are using multiple data sets, make sure they have different prefix names so

as to not overwrite one data set with the other inadvertently! To do this, edit the prefix listing

under &ungrib in namelist.wps to reflect the desired prefix name (often for the constant data

set), then change it back when re-running it for the actual model input.

Advanced Uses: Time-Varying SST, Sea Ice, Albedo, and Vegetation Data

For long-duration simulations, or shorter-duration simulations of phenomena such as tropical

cyclones that significantly influence fields such as sea surface temperature, you may wish to use

time-varying inputs for surface fields that are typically held constant throughout the duration of a

WRF-ARW model simulation. While WPS geographic data can describe the climatological

evolution of albedo and vegetation fraction through time, external time-varying input data are

needed in order for sea surface temperature and/or sea ice to be updated throughout the duration

of your model simulation.

Sometimes, these data may be provided in the same input GRIB files you use to provide initial

and lateral boundary conditions for your model simulations. In this case, no additional steps are

necessary at the WPS stage. Other times, however, you may wish to use external data in lieu of

those provided by your atmospheric model data set. In such cases, first use ungrib to process

your atmospheric data. Next, link the other data sources’ GRIB files to the WPS directory, link

the appropriate Vtable to the WPS directory, edit namelist.wps to change the prefix entry

under &ungrib to some new descriptive name, then run ungrib.exe for these data. Finally,

add the prefix for these data to the fg_name entry under &metgrid in namelist.wps (e.g.,

fg_name = 'FILE','SST' if you used SST as your new prefix), then run metgrid.exe.

I recommend reading through the WPS advanced tutorial information, particularly that related to

METGRID.TBL, if you desire to make use of this option for SST data. Care must be taken to

ensure that the datasets are blended appropriately.

duda_wps_advanced.pdf (ucar.edu) (from the January 2021 WRF Tutorial)

There are some additions to namelist.input for WRF-ARW when using time-varying surface data

sets. Please see the companion section to this one in Part III below for the relevant information.

More advanced uses of multiple input data sources (e.g., multiple time-varying data sets, ocean

mixed layer depth information, etc.) are detailed in the WRF-ARW User’s Guide.

Part III: Configuring and Running the WRF Model

https://www2.mmm.ucar.edu/wrf/users/tutorial/presentation_pdfs/202101/duda_wps_advanced.pdf

Except in the case of a nested domain or idealized simulation, there are two programs that will be

used to setup and run the WRF model: real.exe and wrf.exe. Both programs are housed in

the WRF/run/ directory; change over to that directory now. We'll first use real.exe to take

the data from the WPS and get it ready for use in the model, then use wrf.exe to run the

model. All of this is accomplished on the command line with no GUI options available. For more

information, please refer to Chapter 5 of the WRF-ARW User's Guide.

Step 1: Real-Data Initialization

Before editing any of the files necessary for this step, first link the met_em.d01.* files from the

WPS to the current working directory (WRF/run/) by issuing the following command:

ln –s ../../WPS/met_em.d01.* .

From here, we can move on to editing namelist.input with the necessary parameters. Many of the

parameters in the first few sections of namelist.input will be the same as those in namelist.wps

from the WPS program, so it might be useful to have those parameters handy at this time.

Namelist.input has several parts, each with multiple variables and multiple options for each of

those variables. You will see sections headed by &time_control, &domains, &physics, &fdda,

&dynamics, &bdy_control, &grib2, and &namelist_quilt; some of these will be edited, others

will not. Note that this is not intended to be an end-all listing of the options available to you here,

particularly in terms of physics packages. Refer to the section of Chapter 5 of the WRF-ARW

User’s Guide entitled “Description of Namelist Variables” for more information on these

options. The meanings of many of these variables are readily apparent, so I will only cover those

that are not. As noted before, many of these values are the same as those in namelist.wps. Only

edit values in the first column (if there are multiple columns for a given variable) for now.

The &time_control section of namelist.input is where you will input the basic model timing

parameters. Change history_interval to the time (in minutes) between output times you wish for

model output. Otherwise, simply change all values above history_interval (except for

input_from_file) to the appropriate values and leave all values below history_interval alone. If

you want output in netCDF4-format, add a use_netcdf_classic entry and set it to .false,.

The &domains section of namelist.input is where you will input information about your model’s

domain. Your first option relates to the model’s time step. If you wish to use a fixed time step,

set the time_step variable to a value (in seconds) that is approximately 6 times as large as your

model grid spacing in kilometers. For example, for a 15 km model simulation, set this value to

90. It is helpful, but not necessary, if this time_step value is evenly divisible into 3600, the

number of seconds in an hour. (If this is desired, you may modify time_step from 6*grid spacing

to some other similar value.)

Set the values from max_dom to e_sn to their appropriate values from namelist.wps. Set e_vert

to the desired number of vertical levels. Slightly more complicated is num_metgrid_levels. For

this value, open a terminal window to the WRF/run directory and issue the following command:

ncdump –h met_em.d01.YYYY-MM-DD_HH:00:00 | grep

num_metgrid_levels

where you put in the desired time of one of the met_em files. In the output from ncdump, look

for the num_metgrid_levels toward the top of the screen, then cancel out using Control-C. Edit

namelist.input variable to match this. For NAM input data, this value will be 40; for recent GFS

input data, this value will be 32; and for older GFS input data, this value will be 27. Next, set dx

and dy to the appropriate values from namelist.wps. Ignore the rest of the options for now; these

are generally only relevant to nested runs.

The &physics section is where you will choose what physics packages you wish to include in

your model. Refer to the User’s Guide for what numeric values you need to select for each of

these parameters. Since v3.9, WRF has handled this via physics suites; however, you can

override any of the parameterizations in a given suite by manually adding the relevant entries to

the namelist:

• The mp_physics variable defines what microphysics package you wish to use.

• Longwave and shortwave physics packages are defined in ra_lw_physics and

ra_sw_physics, respectively. Both rely on radt, which defines how frequently (in

minutes) to update the radiation calculation, and this variable should be set to the same as

dx in kilometers (e.g. set this to 18 for dx = 18 km).

• Surface physics packages are handled with sf_sfclay_physics (surface layer) and

sf_surface_physics (land-surface model). The value for num_soil_layers will depend on

the land-surface model chosen; for the NOAH and NOAH-MP land-surface models, this

should be set to 4.

• Boundary-layer parameterizations are specified in bl_pbl_physics. This relies on bldt,

which defines how frequently to call the boundary-layer parameterization; setting this

equal to zero will match the model time step.

• Cumulus parameterization is handled by cu_physics. This relies on cudt, which defines

how frequently to call the cumulus parameterization; setting this to 0 works the same as

for bldt.

• The urban canopy model may be enabled by setting sf_urban_physics to 1.

• If modeling a tropical cyclone, the following line may be added to enable the usage of a

modified surface flux formulation appropriate for tropical cyclones:

isftcflx = 2,

You may also want to consider employing the 1-dimensional oceanic mixed-layer model

for such simulations. See the WRF-ARW User’s Guide for more information.

Ignore the &fdda section. This handles four-dimensional data assimilation options and will not

be used (or maybe even present in the namelist) unless specifically performing data assimilation.

In general, you will not need to edit anything in &dynamics either; however, the diff_opt and

km_opt variables may be tweaked to modify how the model handles diffusion and eddy

coefficients. Refer to the User’s Guide for more if you choose to modify those variables. I do

recommend changing gwd_opt from 1 to 0, however, to turn off the gravity wave drag option.

Otherwise, you should not need to edit any other data in namelist.input.

Step 2: Running the Model

The WRF model uses two programs, real.exe and wrf.exe, to prepare to run and to run the model,

respectively. These programs are both run in parallel (e.g. on multiple machines) using OpenMPI

on the cluster. To do so, you will need an appropriate job submission script. An example is given

below for real.exe; you may use the same one for wrf.exe if you change all instances of “real” in

the text to “wrf.”

#!/bin/sh

#SBATCH -n ##

#SBATCH --mem-per-cpu=2gb

module load icc/20.4

module load openmpi/4.1.2

module use /raid-11/LS/evans36/modules/

module load grib2libs-dec2023

module load netcdf-4.9.2

module load hdf5-1.14.3

module load pnetcdf-1.12.3

ulimit -s unlimited

mpirun ./real.exe

You will need to replace ## with the number of processors on which to run real.exe (or wrf.exe).

This number should ideally be some multiple of 8 up to and including 96, or up to 128 if you

wish to use one of the 128-processor AMD-based compute nodes. You should strive to use an

identical number of processors for real.exe and wrf.exe, however, as well as for all simulation(s)

you may conduct for a given project.

Please also note that not every simulation will require 2 GB of memory per processor (the --

mem-per-cpu=2gb flag); some will require less, while some will require more. You are

encouraged to check the memory usage of each job using:

ssh –t execute-#### top

where #### is replaced with a compute node on which your job runs. This can be identified using

the squeue command and looking for the entry corresponding to your running job, then

identifying the nodes listed in the last column of that entry. You’ll want to look for the value in

the “VIRT” column for one of your processes (e.g., real.exe, wrf.exe, or metgrid.exe) and set the

value of --mem-per-cpu to a value somewhat higher than the actual usage.

Once the job submission script is ready, submit it to the cluster using sbatch, e.g.,

sbatch (name-of-submission-script)

After running sbatch, you will want to exit from the slurm-shell prompt by hitting Ctrl-D on the

keyboard (or, alternatively, type exit and hit enter). You can monitor the progress of real.exe by

looking at the rsl.error.0000 file in the WRF/run directory or by running squeue –j #, where

= the job number returned to you upon running sbatch. Once real.exe has finished, you run

wrf.exe in a similar fashion utilizing a nearly identical job submission script. Model progress can

be examined in the same manner as for real.exe. Once the model has completed, you are ready

for post-processing.

Common Errors: SIGTERM Statements in the rsl.* Files

If you are getting SIGTERM errors in your rsl.* files that keep the model from successfully

completing, check to ensure that all relevant parameters between namelist.wps and

namelist.input are identical. If these are identical, then you may be running into an issue where

your simulation requires more memory than is available on the selected nodes (i.e., you’ve

already requested the maximum available per node). To increase the amount of available

memory, simply add additional processors in multiples of 8 to the real.exe and wrf.exe job

submission scripts.

Advanced Uses: Adaptive Time Steps

With the adaptive time step option, the WRF model will modify the time step up and down as the

model integrates in order to find the most efficient yet computationally stable time step.

Oftentimes, this speeds up model integration by 25-60%. This option is discouraged for research

applications, however. To use this option, simply add the following line (including the ending

comma) immediately below the max_dom option in the &domains section of the namelist:

use_adaptive_time_step = .true.,

Advanced Uses: Two-Way Nesting

Most options to get a two-way nest going are handled with one single run of the WRF model and

through namelist.input. When editing this file, you will note multiple column listings for some of

the variables; these extra columns handle information for the inner nest(s). Edit these variables to

match the desired values for the inner nest, using the values for the outer nest as a guide.

Variables that you did not edit for the single domain run but will need to be edited for a nested

run include input_from_file, fine_input_stream, max_dom (the total number of nests), grid_id (1,

2, 3, etc.), parent_id (generally one less than the grid_id), i/j_parent_start (where in the outer

domain you want the inner grid lower left hand corner to be), parent_grid_ratio (generally 3 is a

good number), parent_time_step_ratio (generally at or near the parent_grid_ratio), and feedback

(1 is yes, where the inner grid writes back to the outer one; requires an odd value for

parent_grid_ratio). Also, num_metgrid_levels needs to be changed for the nests as well to the

number of WRF model levels; see the procedure above to see how to check this.

Notice that I did not discuss input_from_file and fine_input_stream in the previous paragraph.

There are many interrelated options to consider for these two variables. The first option is to

have all fields interpolated from the coarse domain rather than created on their own. This is

probably the fastest method, but also may not lead to as accurate of results as otherwise

expected. In this case, input_from_file would be .false. and you don't need to worry about

fine_input_stream. The second option is to have separate input files from each domain, with

input_from_file set to .true.; unfortunately, this means that the nest has to start at the same time

as the outer domain. The final option also has input_from_file set to .true., but requires you add a

new line after input_from_file for fine_input_stream and set it to a value of 2 for all domains.

This allows you to start the nest at a different time than the initial time.

For a nested run, you run real.exe and wrf.exe as before. Make sure you link over any

necessary met_em.d02 (or .d03, etc.) files to the working directory before running real.exe.

Advanced Uses: Time-Varying SST, Sea Ice, Albedo, and Vegetation Data

If you desire to use time-varying surface datasets, new entries must be added to namelist.input

prior to running real.exe and wrf.exe. The first three of these new entries go at the bottom of the

&time_control section (i.e., before the ending /) and take the form:

io_form_auxinput4 = 2

auxinput4_inname = "wrflowinp_d<domain>"

auxinput4_interval = 360, 360, 360,

Note that auxinput4_inname should appear exactly as it does above. If the input data are

available at a different frequency than every 6 h, change auxinput4_interval to match this

frequency (where auxinput4_interval is given in minutes).

A new entry must also be added to the &physics section of namelist.input. This takes the form:

sst_update = 1

Note that sf_ocean_physics should be set to 0 if this option is activated.

Other Advanced Uses

Recent versions of the WRF-ARW model have added many additional options to the model,

including the ability to use a digital filter to aid in model initialization; apply nudging (to some

specified data set) over some specified time interval; use a 1-D or 3-D ocean model primarily for

tropical cyclone simulations; and many, many others. In addition, many new physical

parameterization packages have been added, some of which have their own additional namelist

parameters that can be tweaked to (theoretically) improve model performance for specific

forecasting applications. A complete listing of all that is possible with the WRF-ARW model is

available in Chapter 5 of the WRF-ARW User’s Guide. If you are in doubt as to whether a

particular option should be used for your simulations, or how it should be configured, please ask.

Part IV: Visualization

The recommended way of visualizing WRF-ARW output is using Python and the wrf-python

package. This requires installing a suitable Python distribution (typically Anaconda Python),

installing the wrf-python package and other necessary packages (e.g., cartopy for mapping), and

then creating and running a Python script that calls upon wrf-python to visualize your data.

We will install the March 202 edition of Anaconda Python, the last one which uses Python 3.10

as its default Python version, since wrf-python has not yet been updated to work with Python

3.11. To install this version of Anaconda Python, copy the following link:

https://repo.anaconda.com/archive/Anaconda3-2023.03-1-Linux-

x86_64.sh

Next, connect to a compute node on mortimer and run the following:

wget <pasted file link>

where <pasted file link> is replaced by the address that you copied above, without the brackets

around the address. Once this installer has downloaded, make it executable:

chmod 744 <downloaded file name>

After doing so, run the executable:

./<downloaded file name>

You should install this into a directory in your data directory (e.g., /raid-

##/LS/username/anaconda) rather than your home directory.

Installation completes by asking if you want to initialize the Anaconda Python package. Do NOT

do this! Anaconda Python contains libraries for programs such as netCDF and the GRIB2

libraries that conflict with those we use with WRF-ARW. Letting the installer initialize

Anaconda Python will cause WRF-ARW to not work, requiring us to manually undo everything

the installer did to fix the issue. Instead, tell it no, then run the eval command that it provides

(changing YOUR_SHELL_NAME in that command to bash), followed by the conda config

command that it provides.

To use your Anaconda Python installation in the future, I recommend creating and loading a

module file. An example is given in /raid-08/LS/evans36/modules/anaconda-py37; you can copy

this file to a directory and with a filename of your choosing and edit it from there. You will want

to edit the appsroot entry to match the path to your Anaconda Python installation and the

MODULEPATH entry to match the directory into which you copied the module file. Save the

file once edited, then exit your text editor. Next, issue the following commands:

module use /path/to/modulefile

module load <whatever you named the module>

where /path/to/modulefile is replaced by the full path to your module file. You will

need to do this each time you wish to use Anaconda Python, and you are strongly encouraged to

unload the module (module unload <module name>) when you are done using it to avoid

conflicts with WRF-ARW-related modules!

The two main packages that you will need to add to Anaconda Python to use wrf-python are wrf-

python itself and cartopy for mapping. To do so, connect to a compute node, load your Anaconda

Python module, then use conda install to install the needed packages:

conda install -c conda-forge wrf-python cartopy

You may also wish to install other packages (such as metpy) at the same time. Anaconda Python

will generally install all necessary supporting packages, such that trying to install just those two

packages will often also install other packages at the same time.

Example Jupyter Notebooks containing wrf-python code snippets for a wide range of common

use cases are available at:

evans36/wrf-python-notebooks: Jupyter Notebooks demonstrating basic wrf-python usage.

(github.com)

In general, you can create your Python scripts on the login node or a compute node if you are

using a regular text editor to do so. You need to connect to the visualization node to use a

graphical editor such as Spyder to write and edit your code, however. You also need to connect

to the visualization node to run your code, whether in Spyder or on the command line.

Conclusions

If you have any questions with WRF model installation, setup, or debugging, please feel free to

ask me (UWM affiliates only; otherwise, please contact wrfhelp@ucar.edu)!

https://github.com/evans36/wrf-python-notebooks
https://github.com/evans36/wrf-python-notebooks

